# 2022 FALL MATH 5310 HOMEWORK 2 SOLUTIONS DUE: SEP 6TH 

SANGHOON KWAK

Question 1. Show that multiplication is well defined in $\mathbb{Z} / m$, i.e. if $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ then $x y \equiv x^{\prime} y^{\prime}$.

Proof. Suppose $x \equiv x^{\prime}$ and $y \equiv y^{\prime}$ modulo $m$. Then there exist $a, b \in \mathbb{Z}$ such that $x^{\prime}=x+a m$ and $y^{\prime}=y+b m$. Hence,

$$
\begin{aligned}
x^{\prime} y^{\prime}-x y & =(x+a m)(y+b m)-x y \\
& =x b m+y a m+a b m^{2}=(x b+y a+a b m) \cdot m \\
& \equiv 0 \quad \bmod m
\end{aligned}
$$

which implies that $x^{\prime} y^{\prime} \equiv x y$ modulo $m$.
Question 2. Let $G$ be a group and $X$ a subset of $G$. Let $\langle X\rangle$ be the intersection of all subgroups of $G$ that contain $X$. Show that $\langle X\rangle$ is in fact a subgroup, called subgroup generated by $X$. If $G=G L_{n}(\mathbb{R})$ and $X$ is the set of all elementary matrices, what subgroup is $\langle X\rangle$ ?

Proof. First note symbolically we can write

$$
\langle X\rangle=\bigcap_{X \subset H \leq G} H
$$

We would like to show $\langle X\rangle$ is a subgroup of $G$. (Note: In fact, a more general fact holds: an intersection of collection of subgroups of a group is again a subgroup. The proof is essentially the same as below.)

- (Identity) $1_{G} \in\langle X\rangle$ since $1_{G}=1_{H} \in H$ for every subgroup $H \supset X$ of $G$.
- (Inverse) Also, for any $a \in\langle X\rangle$ we have that $a \in H$ for every $H \supset X$. Since $H$ itself is a subgroup, $a^{-1} \in H$ for every $H \supset X$. Hence, $a^{-1} \in\langle X\rangle$.
- (Closure) Similarly, for any $a, b \in\langle X\rangle$, it follows that $a b \in H$ for every subgroup $H \supset X$, proving $a b \in\langle X\rangle$.
These prove $\langle X\rangle$ is indeed a subgroup of $H$.
Now set $G=G L_{n}(\mathbb{R})$, and $X$ to be the set of all elementary matrices. We claim $\langle X\rangle$ is in fact the whole group $G L_{n}(\mathbb{R})$. We have $\langle X\rangle \subset G L_{n}(\mathbb{R})$ by definition, so it suffices to prove $\langle X\rangle \supset G L_{n}(\mathbb{R})$. For this, pick $A \in \mathrm{GL}_{n}(\mathbb{R})$. Since an invertible matrix is a product of elementary matrices (Theorem 1.2.16), it follows that $A \in\langle X\rangle$, concluding the proof.

Question 3 (Artin 2.2.4). In which of the following cases is $H$ a subgroup of $G$ ?
(a) $G=G L_{n}(\mathbb{C})$ and $H=\mathrm{GL}_{n}(\mathbb{R})$.
(b) $G=\mathbb{R}^{\times}$and $H=\{1,-1\}$.
(c) $G=\mathbb{Z}^{+}$and $H$ is the set of positive integers.
(d) $G=\mathbb{R}^{\times}$and $H$ is the set of positive reals.
(e) $G=G L_{2}(\mathbb{R})$ and $H$ is the set of matrices $\left[\begin{array}{ll}a & 0 \\ 0 & 0\end{array}\right]$, with $a \neq 0$.

Solution. (a,b,d) $H \leq G$.
(c) $H \not \leq G$. Note $0 \notin H$.
(e) $H \not \leq G$. Note $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \notin H$. Also $H \not \subset G$ either, as $\operatorname{det}\left[\begin{array}{cc}a & 0 \\ 0 & 0\end{array}\right]=0$.

Question 4 (Artin 2.4.7). Let $x$ and $y$ be elements of a group $G$. Assume that each of the elements $x, y$, and $x y$ has order 2. Prove that the set $H=\{1, x, y, x y\}$ is a subgroup of $G$, and that it has order 4.

Proof. To show $H \leq G$, first note $1 \in H$. Also, it is closed under taking inverses:

$$
x^{-1}=x, \quad y^{-1}=y, \quad(x y)^{-1}=x y,
$$

because $x, y$ and $x y$ are all of order 2 . One way to see $H$ is closed under multiplication is to draw the multiplication table(See Section 2.1 of Artin) for $H$ : Here note that since $x y x y=1$,

|  | 1 | $x$ | $y$ | $x y$ |
| :--- | :--- | :--- | :--- | :--- |
| 1 | 1 | $x$ | $y$ | $x y$ |
| $x$ | $x$ | 1 | $x y$ | $y$ |
| $y$ | $y$ | $y x$ | 1 | $y x y$ |
| $x y$ | $x y$ | $x y x$ | $x$ | 1 |

it follows that $x y x=y^{-1}=y$ and $y x y=x^{-1}=x$. Also $y x=x^{-1} y^{-1}=x y$. Hence after substituting these in the table, $H$ is closed under the multiplication, showing $H \leq G$.

Now to show $H$ is of order 4, it suffices to show $1, x, y$ and $x y$ are distinct. First, $x, y$ and $x y$ are distinct from 1 as they are of order 2 . Next, we see $x, y$ are different from $x y$, otherwise we get $x=1$ or $y=1$. Finally, $x \neq y$, otherwise $x y=x^{2}=1$ contradicting the order of $x y$ is 2. Therefore, $H$ has order 4 .

Question 5 (Artin 2.4.9). How many elements of order 2 does the symmetric group $S_{4}$ contain?

Solution. The order 2 elements in $S_{4}$ are exactly 2-cycles and (2,2)-cycles. (See Section 1.5 of Artin.) The number of 2-cycles is ( $\binom{4}{2}=6$ and that of $(2,2)$-cycles is $\binom{4}{2} / 2=3$. Therefore, the total number of order 2 elements is $6+3=9$.

Question 6 (Artin 2.9.7). Determine the order of each of the matrices $A=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 1 \\ 1 & 0\end{array}\right]$ when the matrix entries are interpreted modulo 3 .

Solution. One can check that $A^{n}=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]^{n}=\left[\begin{array}{ll}1 & n \\ 0 & 1\end{array}\right]$, so $A$ is of order 3 in $G L_{2}(\mathbb{Z} / 3)$, the set of invertible matrices with entries in $\mathbb{Z} / 3$.

On the other hand, $B^{n}=\left[\begin{array}{cc}F_{n+1} & F_{n} \\ F_{n} & F_{n-1}\end{array}\right]$ where $F_{n}$ is the $n$-th term of the Fibonacci sequence defined as $F_{n}=F_{n-1}+F_{n-2}$ for $n \geq 2$ and $F_{0}=0, F_{1}=1$. Using this, one can compute that $B^{8}=\left[\begin{array}{ll}34 & 21 \\ 21 & 13\end{array}\right]=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in G L_{2}(\mathbb{Z} / 3)$, and $B^{m} \neq\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right] \in G L_{2}(\mathbb{Z} / 3)$ for $m<8$, proving $B$ is of order 8 .

Question 7 (Bonus question). Construct a group $G$ and elements of $x, y \in G$ of order 2 such that $x y$ has order $n$ for a given integer $n \geq 1$.

Proof. A typical order 2 element to think of is a reflection. The key idea is to observe that the composition of two parallel reflections is a translation. (Two non-parallel reflections compose into a rotation.) Using this, we can construct such $G$. Namely, first consider a real line $\mathbb{R}$. Let $x$ be the reflection at the point $\frac{1}{4}$, and $y$ be the reflection at the point $-\frac{1}{4}$. Then we claim that $x y$ is a translation by +1 . (Here we follow the function composition notation; first apply $y$, and then $x$.) Indeed, for any $r \in \mathbb{R}$, we have

$$
x y(r)=x\left(-\frac{1}{2}-r\right)=\frac{1}{2}-\left(-\frac{1}{2}-r\right)=1+r .
$$

Hence, if the order of $x y$ is given to be infinity, we can just let $x, y$ as such reflections on $\mathbb{R}$. (In this case $\langle x, y\rangle \cong D_{\infty}$, called the infinite dihedral group.)

However, if $n$ is a finite positive integer, we can make $\mathbb{R}$ into a circle $\mathbb{R} / \sim$ by declaring the equivalence relation $r \sim r+n$ for all $r \in \mathbb{R}$. Then $\mathbb{R} / \sim$ becomes a circle with circumference $n$, so the $n$ times of +1 -translation becomes the identity. Now we achived to find the elements $x, y$ of order 2 such that $x y$ is of order $n$, we declare $G=\langle x, y\rangle$, the group generated by $x$ and $y$. (See Question 2). In fact, in this case $G \cong D_{2 n}$, the dihedral group of order $2 n$.

