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Question 1 (Artin 7.7.3). How many elements of order 5 might be contained in a group of
order 20?

Solution. Let n5 be the number of Sylow 5-subgroups in G of order 20. Then by the third
Sylow theorems, we have n5|4 and n5 ≡ 1 mod 2, so n5 = 1. Hence there is only one Sylow
5-subgroup H ≤ G. Because every element of order 5 has to be contained in a Sylow 5-
subgroup, which is H of order 5, there can be only four elements of order 5. (Excluding the
trivial element from H.) //

Question 2 (Artin 7.7.4(a)). Prove that no simple group has order pq, where p and q are
prime.

Proof. Let G be a group of order pq. If p = q, then G is a p-group. Hence by Proposition
7.3.1, G is either abelian or the center Z(G) is nontrivial proper normal subgroup of G, where
both cases imply G is not simple.

Now assume p 6= q. Denote by np and nq the number of Sylow p-subgroups and q-subgroups
in G. By the third Sylow theorems, we have that

np|q, np ≡ 1 mod p,

nq|p, nq ≡ 1 mod q.

If np = 1 or nq = 1, then G will have a normal Sylow subgroups. Hence we may assume
np = q and nq = p. Then q ≡ 1 mod p and p ≡ 1 mod q. Say q = pk + 1 for some k ≥ 1.
Then p < pk + 1 so p 6≡ 1 mod (pk + 1), contradiction. This concludes that G cannot be
simple. �

Question 3 (Artin 7.7.4(b)). Prove that no simple group has order p2q, where p and q are
prime.

Proof. When p = q, the same proof as in Question 2 shows that the group has to be abelian
or has a nontrivial proper center, which is normal. Hence we may assume p 6= q.

Let G be a group of order p2q and denote by np and nq the number of Sylow p- subgroups
and Sylow q- subgroups of G. By the third Sylow theorems,

np|q, np ≡ 1 mod p,

nq|p2, nq ≡ 1 mod q.

Again, if np = 1 or nq = 1, then G fails to be simple. Hence we may assume np = q and
nq = p or nq = p2. From Question 2, we have seen that nq = p led to the contradiction, so
we assume nq = p2.

We will derive another contradiction. Say K1, . . . ,Kp2 the Sylow q-subgroups. Since they
have prime order q, they have trivial intersections. Hence the number of elements contained
in K1, . . . ,Kp2 is (q− 1) · p2 + 1 = p2q− p2 + 1, where the last +1 refers to the trivial element
in G, shared by K1, . . . ,Kp2 . Because Sylow p-subgroups and Sylow q-subgroups have trivial

intersection too, it follows that any Sylow p-subgroup consists of p2 − 1 elements from the
elements are not contained in K1, . . . ,Kp2 , which are exactly (p2−1)-many. This implies that
there can be only one Sylow p-subgroup, so np = 1, contradiction. �
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Question 4 (Artin 7.7.5). Find Sylow 2-subgroups of the following groups: (a) D10, (b) T ,
(c) O, (d) I.

Solution. Denote by np the number of Sylow p-subgroups in the group.

(a) Note D10 has order 20, and we know n5 = 1, from Question 1. Also we have n2|5 and
n2 ≡ 1 mod 2, so n2 = 1 or n2 = 5. However asD10 is non-abelian, we cannot have n2 = 1
as it will give the product structure on D10 so that D10

∼= Z4×Z5 or D10
∼= (Z2×Z2)×Z5,

which are both absurd.
Hence n2 = 5 and n5 = 1. Let H1, . . . ,H5 be the Sylow 2-subgroups of D10. To find

a Sylow 2-subgroup, we can use two order 2 elements that commute: r5 and s when we
identify D10 = 〈r, s | r10 = s2 = 1, rs = sr−1〉. Indeed H1 = 〈r5, s〉 = {1, r5, s, r5s}
has order 4, so a Sylow 2-subgroup. Similarly, we can find other Sylow 2-subgroups by
conjugating them:

H2 = 〈r5, rsr−1〉 = 〈r5, r2s〉
H3 = 〈r5, r2sr−2〉 = 〈r5, r4s〉
H4 = 〈r5, r3sr−3〉 = 〈r5, r6s〉
H5 = 〈r5, r4sr−4〉 = 〈r5, r8s〉.

(b) Note the tetrahedron group T has order 12. Then n2|3 and n2 ≡ 1 mod 2, so n2 = 1 or
n2 = 3. However, we can actually find three order 4 subgroups in T . The idea to find one
is to use two order 2 elements that are commute. In T , these are exactly the π-rotations
about the center of the edges. Labeling the vertices of the tetrahedron by 1, 2, 3, 4, these
π-rotations can be identified as the three (2,2)-cycles: a = (1 2)(3 4), b = (1 3)(2 4),
c = (1 4)(2 3). Note they commute and in particular we have ab = c. In other words, the
subgroup H = 〈a, b, c〉 = 〈a, b〉 ∼= Z2 × Z2. Also, note H is normal in G as it consists of
all (2, 2)-cycles in S4. Therefore, n2 = 1 and H is the only Sylow 2-subgroup of T .

(c) Note the octahedron group O has order 24. Then n2|3 and n2 ≡ 1 mod 2, so n2 = 1 or
n2 = 3. We label the vertices of the octahedron by 0, 1, 2, . . . , 5, where 0 is the apex and
5 is the bottom of the octahedron. Here to find an order 8 subgroup of O, we use the π/2
rotation r = (1 2 3 4) about the axis through 0 and 5, and two π-rotations a = (1 3)(0 5)
and b(2 4)(0 5) about the axis through 2 and 4, and that through 1 and 3 respectively.

Then we have a relation ab = ba = c2 and ac = (1 4)(2 3)(0 5) = c−1a, so 〈a, b, c〉 =
{1, a, b, c, c2, ac2, bc2, c3}, a Sylow 8-subgroup of O. Since there are three choices of (un-
ordered) apex–bottom pair for an octahedron, there are two more Sylow 8-subgroups in
that form, which are actually conjugate to 〈a, b, c〉, realizing n2 = 3.

(d) Note the icosahedral group I has order 60 and actually isomorphic to A5 (Theorem 7.4.4),
which is simple (Theorem 7.4.3). From n2|15 and n2 ≡ 1 mod 2, possible candidates are
n2 = 3, 5, 15.

To find an order 4 group of A5, we can simply use two order 2 elements a = (1 2)(3 4)
and b = (1 3)(2 4) that are fixing 5. Indeed, H = 〈a, b〉 ∼= Z2×Z2, the set of all (2,2)-cycles
of A5, fixing 5. Since we can find such Z2 × Z2 subgroup for each stabilizer of one of five
points 1, 2, 3, 4, 5, we have five such Sylow 2-subgroups in total in I ∼= A5. //

Question 5 (Artin 7.7.9(a)). Classify groups of order 33.

Proof. Let |G| = 33. Denote by np the number of Sylow p-subgroups in G. By the third
Sylow theorems, n3 ≡ 1 mod 3 and n3|11. Hence n3 = 1. Similarly, n11 ≡ 1 mod 11 and
n11|3, so n11 = 1. Say H,K be Sylow 3-subgroup and Sylow 11-subgroup, then H ∩K = 1
and both are normal so G is isomorphic to the product H ×K, which are just Z3 × Z11 as
they have prime order. �
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Question 6 (Bonus: Artin 7.7.6). Exhibit a subgroup of the symmetric group S7 that is a
nonabelian group of order 21.

Solution. Identify S7 as the set of all bijective functions Z/7 → Z/7. Then consider the
function a1 : Z/7→ Z/7 as adding by 1, namely a1(n) = n+ 1 for all n ∈ Z/7. Also, consider
the function m2 : Z/7 → Z/7 as multiplying by 2, namely m2(n) = 2n for all n ∈ Z/7. Note
a1 has order 7 and m2 has order 3 in S7, but a1m2 6= m2a1, as 2n+ 1 6= 2(n+ 1). In fact, we
have a21m2 = m2a1.

Now we show H = 〈a1,m2〉 has order 21. Indeed, using the relation above every element in

H can be written in the form mi
2a

j
1 for some i ∈ {0, 1, 2} and j ∈ {0, 1, . . . , 6}. We can check

they are all different elements:

Id : n 7→ n, m2 : n 7→ 2n, m2
2 : n 7→ 4n

a1 : n 7→ n+ 1, m2a1 : n 7→ 2n+ 2, m2
2a1 : n 7→ 4n+ 4

a21 : n 7→ n+ 2, m2a
2
1 : n 7→ 2n+ 4, m2

2a
2
1 : n 7→ 4n+ 8 = 4n+ 1

a31 : n 7→ n+ 3, m2a
3
1 : n 7→ 2n+ 6, m2

2a
3
1 : n 7→ 4n+ 12 = 4n+ 5

a41 : n 7→ n+ 4, m2a
4
1 : n 7→ 2n+ 8 = 2n+ 1, m2

2a
4
1 : n 7→ 4n+ 16 = 4n+ 2

a51 : n 7→ n+ 5, m2a
5
1 : n 7→ 2n+ 10 = 2n+ 3, m2

2a
5
1 : n 7→ 4n+ 20 = 4n+ 6

a61 : n 7→ n+ 6, m2a
6
1 : n 7→ 2n+ 12 = 2n+ 5, m2

2a
6
1 : n 7→ 4n+ 24 = 4n+ 3

To show they are different elements, one can use that they have different images for the pair
(0, 1). Hence, H = 〈a1,m2〉 is the desired group. //


