2022 FALL MATH 5310 HOMEWORK 14 SOLUTIONS DUE: DEC 7TH

SANGHOON KWAK

Question 1 (Artin 7.7.3). How many elements of order 5 might be contained in a group of order 20?

Solution. Let n_{5} be the number of Sylow 5 -subgroups in G of order 20 . Then by the third Sylow theorems, we have $n_{5} \mid 4$ and $n_{5} \equiv 1 \bmod 2$, so $n_{5}=1$. Hence there is only one Sylow 5 -subgroup $H \leq G$. Because every element of order 5 has to be contained in a Sylow 5subgroup, which is H of order 5 , there can be only four elements of order 5. (Excluding the trivial element from H.)

Question 2 (Artin 7.7.4(a)). Prove that no simple group has order $p q$, where p and q are prime.

Proof. Let G be a group of order $p q$. If $p=q$, then G is a p-group. Hence by Proposition 7.3.1, G is either abelian or the center $Z(G)$ is nontrivial proper normal subgroup of G, where both cases imply G is not simple.

Now assume $p \neq q$. Denote by n_{p} and n_{q} the number of Sylow p-subgroups and q-subgroups in G. By the third Sylow theorems, we have that

$$
\begin{array}{lll}
n_{p} \mid q, & n_{p} \equiv 1 & \bmod p, \\
n_{q} \mid p, & & n_{q} \equiv 1
\end{array} \bmod q . ~ \$
$$

If $n_{p}=1$ or $n_{q}=1$, then G will have a normal Sylow subgroups. Hence we may assume $n_{p}=q$ and $n_{q}=p$. Then $q \equiv 1 \bmod p$ and $p \equiv 1 \bmod q$. Say $q=p k+1$ for some $k \geq 1$. Then $p<p k+1$ so $p \not \equiv 1 \bmod (p k+1)$, contradiction. This concludes that G cannot be simple.

Question 3 (Artin 7.7.4(b)). Prove that no simple group has order $p^{2} q$, where p and q are prime.

Proof. When $p=q$, the same proof as in Question 2 shows that the group has to be abelian or has a nontrivial proper center, which is normal. Hence we may assume $p \neq q$.

Let G be a group of order $p^{2} q$ and denote by n_{p} and n_{q} the number of Sylow p - subgroups and Sylow q - subgroups of G. By the third Sylow theorems,

$$
\begin{array}{rlll}
n_{p} \mid q, & n_{p} \equiv 1 & \bmod p, \\
n_{q} \mid p^{2}, & n_{q} \equiv 1 & \bmod q .
\end{array}
$$

Again, if $n_{p}=1$ or $n_{q}=1$, then G fails to be simple. Hence we may assume $n_{p}=q$ and $n_{q}=p$ or $n_{q}=p^{2}$. From Question 2, we have seen that $n_{q}=p$ led to the contradiction, so we assume $n_{q}=p^{2}$.

We will derive another contradiction. Say $K_{1}, \ldots, K_{p^{2}}$ the Sylow q-subgroups. Since they have prime order q, they have trivial intersections. Hence the number of elements contained in $K_{1}, \ldots, K_{p^{2}}$ is $(q-1) \cdot p^{2}+1=p^{2} q-p^{2}+1$, where the last +1 refers to the trivial element in G, shared by $K_{1}, \ldots, K_{p^{2}}$. Because Sylow p-subgroups and Sylow q-subgroups have trivial intersection too, it follows that any Sylow p-subgroup consists of $p^{2}-1$ elements from the elements are not contained in $K_{1}, \ldots, K_{p^{2}}$, which are exactly $\left(p^{2}-1\right)$-many. This implies that there can be only one Sylow p-subgroup, so $n_{p}=1$, contradiction.

Question 4 (Artin 7.7.5). Find Sylow 2-subgroups of the following groups: (a) D_{10}, (b) T, (c) O, (d) I.

Solution. Denote by n_{p} the number of Sylow p-subgroups in the group.
(a) Note D_{10} has order 20, and we know $n_{5}=1$, from Question 1. Also we have $n_{2} \mid 5$ and $n_{2} \equiv 1 \bmod 2$, so $n_{2}=1$ or $n_{2}=5$. However as D_{10} is non-abelian, we cannot have $n_{2}=1$ as it will give the product structure on D_{10} so that $D_{10} \cong \mathbb{Z}_{4} \times \mathbb{Z}_{5}$ or $D_{10} \cong\left(\mathbb{Z}_{2} \times \mathbb{Z}_{2}\right) \times \mathbb{Z}_{5}$, which are both absurd.

Hence $n_{2}=5$ and $n_{5}=1$. Let H_{1}, \ldots, H_{5} be the Sylow 2-subgroups of D_{10}. To find a Sylow 2 -subgroup, we can use two order 2 elements that commute: r^{5} and s when we identify $D_{10}=\left\langle r, s \mid r^{10}=s^{2}=1, r s=s r^{-1}\right\rangle$. Indeed $H_{1}=\left\langle r^{5}, s\right\rangle=\left\{1, r^{5}, s, r^{5} s\right\}$ has order 4, so a Sylow 2-subgroup. Similarly, we can find other Sylow 2-subgroups by conjugating them:

$$
\begin{aligned}
& H_{2}=\left\langle r^{5}, r s r^{-1}\right\rangle=\left\langle r^{5}, r^{2} s\right\rangle \\
& H_{3}=\left\langle r^{5}, r^{2} s r^{-2}\right\rangle=\left\langle r^{5}, r^{4} s\right\rangle \\
& H_{4}=\left\langle r^{5}, r^{3} s r^{-3}\right\rangle=\left\langle r^{5}, r^{6} s\right\rangle \\
& H_{5}=\left\langle r^{5}, r^{4} s r^{-4}\right\rangle=\left\langle r^{5}, r^{8} s\right\rangle .
\end{aligned}
$$

(b) Note the tetrahedron group T has order 12 . Then $n_{2} \mid 3$ and $n_{2} \equiv 1 \bmod 2$, so $n_{2}=1$ or $n_{2}=3$. However, we can actually find three order 4 subgroups in T. The idea to find one is to use two order 2 elements that are commute. In T, these are exactly the π-rotations about the center of the edges. Labeling the vertices of the tetrahedron by $1,2,3,4$, these π-rotations can be identified as the three (2,2)-cycles: $a=\left(\begin{array}{ll}1 & 2\end{array}\right)(34), b=(13)(24)$, $c=(14)(23)$. Note they commute and in particular we have $a b=c$. In other words, the subgroup $H=\langle a, b, c\rangle=\langle a, b\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$. Also, note H is normal in G as it consists of all $(2,2)$-cycles in S_{4}. Therefore, $n_{2}=1$ and H is the only Sylow 2-subgroup of T.
(c) Note the octahedron group O has order 24. Then $n_{2} \mid 3$ and $n_{2} \equiv 1 \bmod 2$, so $n_{2}=1$ or $n_{2}=3$. We label the vertices of the octahedron by $0,1,2, \ldots, 5$, where 0 is the apex and 5 is the bottom of the octahedron. Here to find an order 8 subgroup of O, we use the $\pi / 2$ rotation $r=\left(\begin{array}{lll}1 & 2 & 3\end{array} 4\right)$ about the axis through 0 and 5 , and two π-rotations $a=\left(\begin{array}{ll}1 & 3\end{array}\right)\left(\begin{array}{l}0\end{array}\right)$ and $b(24)(05)$ about the axis through 2 and 4 , and that through 1 and 3 respectively.

Then we have a relation $a b=b a=c^{2}$ and $a c=(14)(23)(05)=c^{-1} a$, so $\langle a, b, c\rangle=$ $\left\{1, a, b, c, c^{2}, a c^{2}, b c^{2}, c^{3}\right\}$, a Sylow 8 -subgroup of O. Since there are three choices of (unordered) apex-bottom pair for an octahedron, there are two more Sylow 8 -subgroups in that form, which are actually conjugate to $\langle a, b, c\rangle$, realizing $n_{2}=3$.
(d) Note the icosahedral group I has order 60 and actually isomorphic to A_{5} (Theorem 7.4.4), which is simple (Theorem 7.4.3). From $n_{2} \mid 15$ and $n_{2} \equiv 1 \bmod 2$, possible candidates are $n_{2}=3,5,15$.

To find an order 4 group of A_{5}, we can simply use two order 2 elements $a=\left(\begin{array}{ll}1 & 2\end{array}\right)(34)$ and $b=(13)(24)$ that are fixing 5 . Indeed, $H=\langle a, b\rangle \cong \mathbb{Z}_{2} \times \mathbb{Z}_{2}$, the set of all (2,2)-cycles of A_{5}, fixing 5 . Since we can find such $\mathbb{Z}_{2} \times \mathbb{Z}_{2}$ subgroup for each stabilizer of one of five points $1,2,3,4,5$, we have five such Sylow 2-subgroups in total in $I \cong A_{5}$.

Question 5 (Artin 7.7.9(a)). Classify groups of order 33.
Proof. Let $|G|=33$. Denote by n_{p} the number of Sylow p-subgroups in G. By the third Sylow theorems, $n_{3} \equiv 1 \bmod 3$ and $n_{3} \mid 11$. Hence $n_{3}=1$. Similarly, $n_{11} \equiv 1 \bmod 11$ and $n_{11} \mid 3$, so $n_{11}=1$. Say H, K be Sylow 3 -subgroup and Sylow 11-subgroup, then $H \cap K=1$ and both are normal so G is isomorphic to the product $H \times K$, which are just $\mathbb{Z}_{3} \times \mathbb{Z}_{11}$ as they have prime order.

Question 6 (Bonus: Artin 7.7.6). Exhibit a subgroup of the symmetric group S_{7} that is a nonabelian group of order 21.

Solution. Identify S_{7} as the set of all bijective functions $\mathbb{Z} / 7 \rightarrow \mathbb{Z} / 7$. Then consider the function $a_{1}: \mathbb{Z} / 7 \rightarrow \mathbb{Z} / 7$ as adding by 1 , namely $a_{1}(n)=n+1$ for all $n \in \mathbb{Z} / 7$. Also, consider the function $m_{2}: \mathbb{Z} / 7 \rightarrow \mathbb{Z} / 7$ as multiplying by 2, namely $m_{2}(n)=2 n$ for all $n \in \mathbb{Z} / 7$. Note a_{1} has order 7 and m_{2} has order 3 in S_{7}, but $a_{1} m_{2} \neq m_{2} a_{1}$, as $2 n+1 \neq 2(n+1)$. In fact, we have $a_{1}^{2} m_{2}=m_{2} a_{1}$.

Now we show $H=\left\langle a_{1}, m_{2}\right\rangle$ has order 21. Indeed, using the relation above every element in H can be written in the form $m_{2}^{i} a_{1}^{j}$ for some $i \in\{0,1,2\}$ and $j \in\{0,1, \ldots, 6\}$. We can check they are all different elements:

$$
\begin{array}{lll}
\text { Id }: n \mapsto n, & m_{2}: n \mapsto 2 n, & m_{2}^{2}: n \mapsto 4 n \\
a_{1}: n \mapsto n+1, & m_{2} a_{1}: n \mapsto 2 n+2, & m_{2}^{2} a_{1}: n \mapsto 4 n+4 \\
a_{1}^{2}: n \mapsto n+2, & m_{2} a_{1}^{2}: n \mapsto 2 n+4, & m_{2}^{2} a_{1}^{2}: n \mapsto 4 n+8=4 n+1 \\
a_{1}^{3}: n \mapsto n+3, & m_{2} a_{1}^{3}: n \mapsto 2 n+6, & m_{2}^{2} a_{1}^{3}: n \mapsto 4 n+12=4 n+5 \\
a_{1}^{4}: n \mapsto n+4, & m_{2} a_{1}^{4}: n \mapsto 2 n+8=2 n+1, & m_{2}^{2} a_{1}^{4}: n \mapsto 4 n+16=4 n+2 \\
a_{1}^{5}: n \mapsto n+5, & m_{2} a_{1}^{5}: n \mapsto 2 n+10=2 n+3, & m_{2}^{2} a_{1}^{5}: n \mapsto 4 n+20=4 n+6 \\
a_{1}^{6}: n \mapsto n+6, & m_{2} a_{1}^{6}: n \mapsto 2 n+12=2 n+5, & m_{2}^{2} a_{1}^{6}: n \mapsto 4 n+24=4 n+3
\end{array}
$$

To show they are different elements, one can use that they have different images for the pair $(0,1)$. Hence, $H=\left\langle a_{1}, m_{2}\right\rangle$ is the desired group.

