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Question 1 (Artin 7.7.3). How many elements of order 5 might be contained in a group of
order 207

Solution. Let ns be the number of Sylow 5-subgroups in GG of order 20. Then by the third
Sylow theorems, we have ns|4 and ns =1 mod 2, so ns = 1. Hence there is only one Sylow
5-subgroup H < (. Because every element of order 5 has to be contained in a Sylow 5-
subgroup, which is H of order 5, there can be only four elements of order 5. (Excluding the
trivial element from H.) //

Question 2 (Artin 7.7.4(a)). Prove that no simple group has order pg, where p and ¢ are
prime.

Proof. Let G be a group of order pg. If p = ¢, then G is a p-group. Hence by Proposition
7.3.1, G is either abelian or the center Z(@G) is nontrivial proper normal subgroup of G, where
both cases imply G is not simple.

Now assume p # ¢. Denote by n, and n, the number of Sylow p-subgroups and g-subgroups
in G. By the third Sylow theorems, we have that

np|q, np =1 mod p,
ng|p, ng =1 mod q.

If n, = 1 or ny = 1, then G will have a normal Sylow subgroups. Hence we may assume
ny = q and ng = p. Then ¢ =1 mod p and p =1 mod ¢q. Say ¢ = pk + 1 for some k > 1.
Then p < pk+ 1sop # 1 mod (pk + 1), contradiction. This concludes that G cannot be
simple. Il

Question 3 (Artin 7.7.4(b)). Prove that no simple group has order p?q, where p and ¢ are
prime.

Proof. When p = g, the same proof as in Question 2 shows that the group has to be abelian
or has a nontrivial proper center, which is normal. Hence we may assume p # q.

Let G be a group of order p?q and denote by n, and ng the number of Sylow p- subgroups
and Sylow g¢- subgroups of G. By the third Sylow theorems,

nplg, np, =1 mod p,
nq|p27 ng=1 mod g.

Again, if n, = 1 or ny, = 1, then G fails to be simple. Hence we may assume n, = ¢ and
Ng = p O Ng = p?. From Question 2, we have seen that nq = p led to the contradiction, so
we assume n, = p.

We will derive another contradiction. Say Ki,..., K, the Sylow g-subgroups. Since they
have prime order ¢, they have trivial intersections. Hence the number of elements contained
in Kq,..., Ky is (g—1) -p? 4+ 1 = p?>q — p? + 1, where the last +1 refers to the trivial element
in G, shared by K1,..., K,2. Because Sylow p-subgroups and Sylow g-subgroups have trivial
intersection too, it follows that any Sylow p-subgroup consists of p?> — 1 elements from the
elements are not contained in K7, ..., K2, which are exactly (p? —1)-many. This implies that

there can be only one Sylow p-subgroup, so n, = 1, contradiction. O
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Question 4 (Artin 7.7.5). Find Sylow 2-subgroups of the following groups: (a) Dig, (b) T,
(c) O, (d) I.

Solution. Denote by n, the number of Sylow p-subgroups in the group.

(a)

Note Djg has order 20, and we know ns = 1, from Question 1. Also we have ns|5 and
no =1 mod 2,s0n9 = 1orne = 5. However as Dy is non-abelian, we cannot have no =1
as it will give the product structure on Dy so that Do = Zy x Zs or Dyg =2 (Zo X Zg) X Zs,
which are both absurd.

Hence no = 5 and n5 = 1. Let Hy,..., Hs be the Sylow 2-subgroups of Dig. To find
a Sylow 2-subgroup, we can use two order 2 elements that commute: 7> and s when we
identify Dig = (r,s | 710 = 52 = 1,rs = sr~!). Indeed Hy = (r°,s) = {1,7% 5,75}
has order 4, so a Sylow 2-subgroup. Similarly, we can find other Sylow 2-subgroups by
conjugating them:

Hy = (5, rsr™t) = (15, 125)
Hs = (5 r?sr72) = (15 rls)
Hy = (5, r3sr73) = (15 r%s)
Hs = (5, rtsr™) = (5 r8s)

Note the tetrahedron group 7" has order 12. Then n3|3 and ny =1 mod 2, so ng =1 or
ne = 3. However, we can actually find three order 4 subgroups in 7. The idea to find one
is to use two order 2 elements that are commute. In T, these are exactly the w-rotations
about the center of the edges. Labeling the vertices of the tetrahedron by 1,2, 3,4, these
m-rotations can be identified as the three (2,2)-cycles: a = (1 2)(3 4), b = (1 3)(2 4),
c¢=(14)(2 3). Note they commute and in particular we have ab = c¢. In other words, the
subgroup H = (a,b,c) = {(a,b) = Zy x Zy. Also, note H is normal in G as it consists of
all (2,2)-cycles in Sy. Therefore, ng = 1 and H is the only Sylow 2-subgroup of T'.

Note the octahedron group O has order 24. Then ng|3 and no =1 mod 2, so ng =1 or
ne = 3. We label the vertices of the octahedron by 0,1,2,...,5, where 0 is the apex and
5 is the bottom of the octahedron. Here to find an order 8 subgroup of O, we use the /2
rotation 7 = (1 2 3 4) about the axis through 0 and 5, and two 7-rotations a = (1 3)(0 5)
and b(2 4)(0 5) about the axis through 2 and 4, and that through 1 and 3 respectively.

Then we have a relation ab = ba = ¢ and ac = (1 4)(2 3)(0 5) = ¢ 'a, so {a,b,c) =
{1,a,b,c,c? ac? bc?, 3}, a Sylow 8-subgroup of O. Since there are three choices of (un-
ordered) apex—bottom pair for an octahedron, there are two more Sylow 8-subgroups in
that form, which are actually conjugate to (a, b, ¢), realizing ns = 3.

Note the icosahedral group I has order 60 and actually isomorphic to A5 (Theorem 7.4.4),
which is simple (Theorem 7.4.3). From ns|15 and na =1 mod 2, possible candidates are
ng = 3, 5, 15.

To find an order 4 group of As, we can simply use two order 2 elements a = (1 2)(3 4)
and b = (1 3)(24) that are fixing 5. Indeed, H = (a, b) = Zy x Zs, the set of all (2,2)-cycles
of As, fixing 5. Since we can find such Zs x Zs subgroup for each stabilizer of one of five
points 1,2,3,4,5, we have five such Sylow 2-subgroups in total in I = As. //

Question 5 (Artin 7.7.9(a)). Classify groups of order 33.

Proof. Let |G| = 33. Denote by n, the number of Sylow p-subgroups in G. By the third
Sylow theorems, n3 = 1 mod 3 and n3|11. Hence ng = 1. Similarly, n1; = 1 mod 11 and
n11/3, so n11 = 1. Say H, K be Sylow 3-subgroup and Sylow 11-subgroup, then H N K =1
and both are normal so G is isomorphic to the product H x K, which are just Zs x Z1; as
they have prime order. O
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Question 6 (Bonus: Artin 7.7.6). Exhibit a subgroup of the symmetric group S7 that is a
nonabelian group of order 21.

Solution. Identify S; as the set of all bijective functions Z/7 — Z/7. Then consider the
function ay : Z/7 — Z/7 as adding by 1, namely aj(n) =n+1 for all n € Z/7. Also, consider
the function me : Z/7 — Z/7 as multiplying by 2, namely ma(n) = 2n for all n € Z/7. Note
ay has order 7 and mg has order 3 in S7, but aymg # moaq, as 2n+ 1 # 2(n+1). In fact, we
have a%mQ = moaj.

Now we show H = (a;, mg) has order 21. Indeed, using the relation above every element in
H can be written in the form mba} for some i € {0,1,2} and j € {0,1,...,6}. We can check
they are all different elements:

2.

Id:nw—mn, mo 1 n — 2n, my 1 n — 4n

ar:n—n-+1, moay : n +— 2n + 2, m%al:nb—>4n+4

adin e n 42, mga%:nH2n+4, m%a%:nb—>4n+8:4n+1
aiin—n+3, maas : s 2n + 6, mial in > 4n+ 12 =4n +5
al:nn44, moal :n > 2n 48 =2n + 1, m3aj i n > 4n 4+ 16 = 4n + 2
aj:n v n 45, maal i n i 2n 410 = 2n + 3, m3al s m o 4n 420 = 4n + 6
a$:n s n 46, maal i n > 2n 412 = 2n + 5, m3al :n > dn 4+ 24 = 4dn + 3

To show they are different elements, one can use that they have different images for the pair
(0,1). Hence, H = (a1, mg) is the desired group. //



