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Question 1 (Artin 6.11.3). Let S be a set on which a group G operates, and let H be the
subset of elements g such that gs = s for all s in S. Prove that H is a normal subgroup of G.

Proof. Note that H = ker (ϕ : G→ Sym(S))�G, where ϕ is the permutation reprentation of
the action Gy S. �

Question 2 (Artin 6.11.4). Let G be the dihedral group D4 of symmetries of a square. Is
the action of G on the vertices a faithful action? on the diagonals?

Solution. The D4-action on the vertices of a square is faithful, as every nontrivial rotation
and reflection moves some vertices to other. However it is not faithful on the diagonals, as
π-rotation fixes both diagonals. //

Question 3 (Artin 6.11.5). A group G operates faithfully on a set S of five elements, and
there are two orbits, one of order 3 and one of order 2. What are the possible groups?

Solution. From the faithful action G y S, we have an injective permutation representation
ϕ : G→ S5. Also, as G has two orbits as given, we have two restricted permutation represen-
tations on each orbit:

ϕ1 : G→ S2, ϕ2 : G→ S3.

Hence, we can combine those to get the following homomorphism:

ψ : G→ S2 × S3, g 7→ (ϕ1(g), ϕ2(g)).

Note ψ is injective, as trivial action on both orbits in S is the trivial action on S as a whole, so
only the identity can be in the kernel of ψ. Hence, G is isomorphic to a subgroup of S2 × S3.

Next, as one orbit has order 2, we can conclude that ϕ1 is nontrivial, so ϕ1 is surjective.
Similarly, we have that the image of ϕ2 has to contain a 3-cycle, so the order of ϕ2(G) is at
least 3. Hence, G ∼= ψ(G) has Z2 and Z3 as subgroups, so |G| is divisible by 6. Among the
subgroups of S2 × S3, there are only three subgroups whose order is divisible by 6; S2 × S3
itself, S2 × Z3, and 1 × S3 ∼= S3. The first two groups do have faithful action on S with
the two orbits, each of which is acted by each component of S2 × S3 or S2 × Z3. The third
one, S3, also has a faithful action on S, by letting S = {1, 2, 3,+,−} where S3 y {1, 2, 3} by
permutation, and S3 y {+,−} by the sign of each permutation in S3. All in all, G ∼= S2×S3,
or G ∼= S2 × Z3, or G ∼= S3. //

Question 4 (Artin 6.11.7(a)). Find the smallest integer n such that D4 has a faithful oper-
ation on a set of order n.

Solution. Say |A| = n and D4 y A faithfully. Then the permutation representation ϕ : D4 →
Sn is injective. Hence, by counting the orders, we have that 8 = |D4| ≤ |Sn| = n!. Thus,
n ≥ 4.

On the other hand, from Question 2, we have an example of faithful action D4 y A with
|A| = 4. That is, just set A to be the set of four vertices of the square associated with D4.
Therefore, n = 4 is the smallest number of order of the set on which D4 faithfully acts. //
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Question 5 (Artin 6.11.9). Three sheets of rectangular paper S1, S2, S3 are made into a
stack. Let G be the group of all symmetries of this configuration, including symmetries of the
individual sheets as well as permutations of the set of sheets. Determine the order of G, and
the kernel of the map G→ S3 defined by the permutations of the set {S1, S2, S3}.

Solution. Each sheet has 2×2 = 4 symmetries, generated by reflections across x, y-axes when
we embed each sheet into xy-plane. Also there are |S3| = 3! = 6 symmetries for shuffling the
three sheets. Since the symmetries of each sheet and the shuffling commute and independent,
the total number of symmetries is |G| = 43 × 6 = 384.

The kernel of the permutation representation G→ SS1,S2,S3
∼= S3 is the set of symmetries

in G that does not shuffle at all. Hence, the kernel is just (Z2 × Z2)
3 ∼= Z6

2, whose order is
26 = 64, generated by the two reflections for each S1, S2 and S3. //

Question 6 (Artin 6.M7(b),(c)). Let G be a finite group operating on a finite set S. For each
element g of G, let Sg denote the subset of elements of S fixed by g : Sg = {s ∈ S | gs = s},
and let Gs be the stabilizer of s.

(b) Prove the formula
∑

s∈S |Gs| =
∑

g∈G |Sg|.
(c) Prove Burnside’s Formula: |G| · (number of orbits) =

∑
g∈G |Sg|.

Proof. (b) This is one instance of double counting problem. Enumerate the group elements
of G as g1, . . . , gm and the elements of S as s1, . . . , sk. Then consider an m× k table with
each entry is either 0 or 1. Each row will be represented by Sgi for some i = 1, . . . , n
and each column of the table will be represented by Gsj for some j = 1, . . . , k. The key
observation is the following equivalence:

g ∈ Gs ⇐⇒ s ∈ Sg.

Hence, for each (i, j)-entry of the table we mark 1 if g ∈ Gs or equivalently s ∈ Sg, and
we mark 0 otherwise. Then |Sgi | will be exactly the sum of i-th row, and |Gsj | will be
the sum of j-th column. Therefore, both of the sums∑

s∈S
|Gs|,

∑
g∈G
|Sg|

are the total sum of all the entries of the table, so they are equal.
(c) From the orbit-stabilizer theorem, we know that for each s ∈ S

|G| = |Gs| · |G · s|,
where G · s is the orbit of s under G. Hence, by replacing |Gs| with |G|/|G · s| from the
left hand side of the formula of (b), we get:∑

s∈S
|G|/|G · s| = |G|

∑
s∈S

1

|G · s|
=

∑
g∈G
|Sg|.

Finally, observe that for each s′ ∈ S we have
∑

s∈G·s′
1
|G·s| = |G · s′| · 1

|G·s′| = 1, so the sum∑
s∈S

1
|G·s| counts nothing but the number of orbits of the action G y S. All in all, we

conclude
|G| · (number of orbits) =

∑
g∈G
|Sg|. �


