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SANGHOON KWAK

Question 1 (Artin 6.7.1). Let G = D4 be the dihedral group of symmetries of the square.

(a) What is the stabilizer of a vertex? of an edge?
(b) G operates on the set of two elements consisting of the diagonal lines. What is the

stabilizer of a diagonal?

Solution. (a) Let D4 = 〈r, s | r4 = s2 = 1, rs = sr−1〉 where r is the counter clockwise
π
2 rotation, and S is the reflection across a diagonal of the square. Then the stabilizers

of vertices will be 〈s〉 or 〈sr2〉 depending on whether the vertex lies on the diagonal
across which s is operated. Since s2 = (sr2)2 = 1, we conclude the vertex stabilizers are
〈s〉 ∼= 〈sr2〉 ∼= Z/2.

Similarly, the edge stabilizers are of the form 〈rs〉 or 〈r−1s〉, both isomorphic to Z/2.
(b) The diagonal stabilizers are either 〈s, r2〉 or r−1〈s, r2〉r, which are both isomorphic to

Z/2× Z/2, as sr2 = r2s. //

Question 2 (Artin 6.7.7). Let G = GLn(R) operate on the set V = Rn by left multiplication.

(a) Describe the decomposition of V into orbits for this operation.
(b) What is the stabilizer of e1?

Solution. (a) Claim: the orbit decomposition is Rn = {0} ∪ (Rn \ {0}). In fact, for every
nonzero vectors v, w ∈ Rn one can extend {v} and {w} to two bases of Rn, where one
basis can be mapped to the other by some A ∈ GLn(R). In particular, Av = w, showing
that GLn(R) is transitive on Rn \{0}. On the other hand, GLn(R) ·0 = 0, so we conclude
the decomposition in the aforementioned Claim.

(b) Note for A ∈ GLn(R), that Ae1 is the first column of A. Hence, for Ae1 = e1 to
hold, it follows that the first column of A is e1. Therefore, the stabilizer of e1 is {A ∈
GLn(R)|The first column of A is e1}, which is indeed a subgroup of GLn(R). //

Question 3 (Artin 6.7.10(a)). Describe the orbit and the stabilizer of the matrix A =

[
1 0
0 2

]
under conjugation in the general linear group GL2(R).

Solution. The orbit of A under conjugation in GL2(R) is just the set of matrices that are
similar to A, or equivalently the set of 2 × 2 matrices whose characteristic polynomial is
p(t) = t2 − 3t+ 2. This is also equivalent to saying the set of 2× 2 matrices whose trace is 3
and determinant is 2.

To find the stabilizer of A, one can let P =

[
a b
c d

]
and compute P−1AP = A. Dividing

the cases, one obtains b = c = 0 so P = diag(k, `) for some k, ` 6= 0, so the stablizer of A is
{diag(k, `) | k, ` 6= 0}. //
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Question 4 (Artin 6.9.2). Let G be the group of rotational symmetries of a cube, let
Gv, Ge, Gf be the stabilizers of a vertex v, an edge e, and a face f of the cube, and let
V,E, F be the sets of vertices, edges, and faces, respectively. Determine the formulas(of the
size of orbits) that represent the decomposition of each of the three sets into orbits for each
of the subgroups.

Figure 1. Cubes with Gv, Ge, Gf -actions. Vertices(or edges, respectively) in
same color are in the same orbit. Faces denoted by the same number in the
same orbit.

Solution. Refer to Figure 1. For Gv-action:

• |V | = 1 + 3 + 3 + 1.
• |E| = 3 + 3 + 3 + 3.
• |F | = 3 + 3.

For Ge-action:

• |V | = 2 + 2 + 2 + 2.
• |E| = 1 + 2 + 2 + 2 + 2 + 2 + 1.
• |F | = 2 + 2 + 2

For Gf -action:

• |V | = 4 + 4.
• |E| = 4 + 4 + 4.
• |F | = 1 + 4 + 1. //

Question 5 (Artin 6.9.5). Let F be a section of an I-beam, which one can think of as the
product set of the letter I and the unit interval. Identify its group of symmetries, orientation-
reversing symmetries included.

Solution. Let F = I × [0, 1]. Then the symmetries of F are generated by the symmetries of I
and the symmetries of [0, 1]. The nontrivial symmetries of I are the π-rotation r, the vertical
reflection s1, and the horizontal reflection s2. However, note r = s1s2. The only nontrivial
symmetry of [0, 1] is the reflection across 1

2 , called s 1
2
. Hence, the symmetry group of F is

the group 〈s1, s2, s 1
2
〉, which in fact is isomorphic to Z2×Z2×Z2 as s1, s2, s 1

2
commute. //
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Question 6 (Bonus: Artin 6.7.10(b)). Interpreting the matrix A

[
1 0
0 2

]
in GL2(F5), find the

order of the orbit.

Solution. An easy way to find the order of the orbit is to use orbit-stabilizer theorem. The
stabilizer of A under the conjugation in GL2(F5) is the set of 2×2 invertible diagonal matrices
as in Question 3. There are 42 = 16 of them. On the other hand, we can compute |GL2(F5)|
using a combinatorial argument. Note a matrix is invertible if and only if all of column vectors
are linearly independent. Then for the first column of 2 × 2 invertible matrices in GL2(F5),
any nonzero vector can be the first column, so there is 52 − 1 = 24 choice. Given the first
column, there are 5 linearly dependent vectors (including the zero vector) to the first column,
so there are 52 − 5 = 20 choice for the second column. Hence, GL2(F5) = 24 · 20 = 480. All
in all, by the orbit-stabilizer theorem, the order of orbit is 480/16− 30.

Alternatively, as in Question 3, one can directly find the orbit of A under conjugation in
GL2(F5) as the set of matrices whose trace is 3 and determinant is 2. Those are the following
30: [

2 0
∗ 1

]
,

[
2 ∗
0 1

]
,

[
1 0
∗ 2

]
,

[
1 ∗
0 2

]
,[

3 1
3 0

]
,

[
3 3
1 0

]
,

[
3 4
2 0

]
,

[
3 2
4 0

]
,[

0 1
3 3

]
,

[
0 3
1 3

]
,

[
0 4
2 3

]
,

[
0 2
4 3

]
,[

4 3
3 4

]
,

[
4 4
1 4

]
,

[
4 1
4 4

]
,

[
4 2
2 4

]
.

Note there are 18 matrices in total in the first column, as the first and the second have one
matrix in common, and the third and the fourth have one matrix in common. //


