2022 FALL MATH 5310 HOMEWORK 10 SOLUTIONS DUE: NOV 7TH

SANGHOON KWAK

Question 1 (Artin 8.5.1(b)). Let $V=\left(\mathbb{R}^{n},|\cdot|\right)$ be the standard Euclidean space. Prove the parallelogram law $|v+w|^{2}+|v-w|^{2}=2|v|^{2}+2|w|^{2}$.

Proof.

$$
\begin{aligned}
|v+w|^{2}+|v-w|^{2} & =(v+w) \cdot(v+w)+(v-w) \cdot(v-w) \\
& =\left\{|v|^{2}+2 v \cdot w+|w|^{2}\right\}+\left\{|v|^{2}-2 v \cdot w+|w|^{2}\right\} \\
& =2|v|^{2}+2|w|^{2} .
\end{aligned}
$$

Question 2 (Artin 8.5.1(c)). Let $V=\left(\mathbb{R}^{n},|\cdot|\right)$ be the standard Euclidean space. Prove that if $|v|=|w|$, then $(v+w) \perp(v-w)$.

Proof. Suppose $|v|=|w|$. Then

$$
(v+w) \cdot(v-w)=|v|^{2}-|w|^{2}=0
$$

so $(v+w) \perp(v-w)$.
Question 3 (Artin 8.5.4(a)). Let T be a linear operator on $V=\mathbb{R}^{n}$ whose matrix A is a real symmetric matrix. Prove that V is the orthogonal sum $V=(\operatorname{ker} T) \oplus(\operatorname{im} T)$.

Proof. First, we show $(\operatorname{im} T) \subset(\operatorname{ker} T)^{\perp}$. Say $v=T u \in \operatorname{im} T$ for some $u \in V$. Then for any $w \in \operatorname{ker} T$,

$$
\langle v, w\rangle=\langle T u, w\rangle=\left\langle u, T^{t} w\right\rangle=\langle u, T w\rangle=\langle u, 0\rangle=0,
$$

where we used $T^{t}=T$ as A is symmetric.
To show $\operatorname{im} T=(\operatorname{ker} T)^{\perp}$, we count the dimension using rank-nullity theorem:

$$
\operatorname{dim}(\operatorname{im} T)=\operatorname{dim} V-\operatorname{dim}(\operatorname{ker} T)=\operatorname{dim}(\operatorname{ker} T)^{\perp}
$$

proving that $\operatorname{im} T=(\operatorname{ker} T)^{\perp}$ in fact.
All in all, we conclude that $V=(\operatorname{ker} T) \oplus(\operatorname{ker} T)^{\perp}=(\operatorname{ker} T) \oplus(\operatorname{im} T)$.
Question 4 (Artin 8.6.2). Let T be a symmetric operator on a Euclidean space. Using Proposition 8.6.9, prove that if v is a vector and if $T^{2} v=0$, then $T v=0$.

Proof. Suppose $T^{2} v=0$. Then $0=\left\langle T^{2} v, v\right\rangle=\langle T v, T v\rangle=|T v|^{2}$, so $T v=0$.
Question 5 (Artin 8.6.3). What does the Spectral Theorem tell us about a real 3×3 matrix that is both symmetric and orthogonal?

Solution. Let A be symmetric and orthogonal. Since A is symmetric, by Spectral theorem there exists an orthogonal matrix P such that $P^{t} A P$ is a real 3×3 diagonal matrix, say $P^{t} A P=\operatorname{diag}(a, b, c)$. On the other hand, since A is orthogonal and symmetric, we have $I=A^{t} A=A^{2}$. Therefore,

$$
\operatorname{diag}\left(a^{2}, b^{2}, c^{2}\right)=\left(P^{t} A P\right)^{2}=P^{t} A P P^{t} A P=P^{t} A^{2} P=P^{t} P=I,
$$

so $a, b, c \in\{ \pm 1\}$. All in all, we can conclude that A is diagonalizable with orthogonal matrix, such that the diagonal entries are either 1 or -1 .

Question 6 (Bonus: Artin 8.5.1(a)). Let $V=\left(\mathbb{R}^{n},|\cdot|\right)$ be the standard Euclidean space. Prove the Schwarz inequality $|\langle v, w\rangle| \leq|v||w|$.

Proof. Consider $x=u+t v \in V$ for some $u, v \in V$, and $t \in \mathbb{R}$. Then by definition $|x|^{2} \geq 0$, so

$$
|u+t v|^{2}=(u+t v) \cdot(u+t v)=|u|^{2}+t^{2}|v|^{2}+2 t(u \cdot v) \geq 0 .
$$

Rearranging in terms of t, we get the following quadratic inequality:

$$
|v|^{2} t^{2}+(2 u \cdot v) t+|u|^{2} \geq 0 .
$$

Hence the quadratic function on the left hand side can have at most one zero. This is equivalent to saying that it has a nonpositive discriminant:

$$
D=(2 u \cdot v)^{2}-4\left(|v|^{2}|u|^{2}\right)=4(u \cdot v)^{2}-4|u|^{2}|v|^{2} \leq 0,
$$

so we obtain $|u \cdot v| \leq|u||v|$.

