
G Go interface

GO! GO! GO!
— PUNTERS AT THE RACE TRACK.

G.1 Go history . G–1
G.2 Go language summary . G–2
G.3 Numbers in Go . G–3
G.4 Simple interface from Go to C . G–5
G.5 The Go interface to the mathcw library . G–6
G.6 Examples of the Go MathCW package . G–9

G.6.1 Floating-point access to fraction and exponent . G–9
G.6.2 Computing trigonometric functions . G–11
G.6.3 Decoding floating-point fields . G–12
G.6.4 Accurate vector summation . G–13

G.7 Calling Go functions from C . G–15
G.8 Limitations of Go and its math library . G–17
G.9 Summary . G–18

Compared to other programming languages with interfaces to the mathcw library, the Go language is relatively
recent. It was not even available when most of the software library, and the book The Mathematical Function
Computation Handbook, were written.

This appendix would have appeared in the book at the location suggested by its page numbers, but was
necessarily written after book publication.

G.1 Go history

Go language development began in 2007 at Google, Inc., but the first public release from that team was in 2012.
In December 2010, the GNU Compiler Collection (gcc) team added support for Go with the gccgo-4.6 compiler.
The language is well described in a recent book, The Go Programming Language, by Alan A. A. Donovan and
Brian W. Kernighan.1 There are also extensive online resources for Go, notably, in The Go Programming Language
Specification2 and via the go doc name command.

As that book describes, the heritage of Go can be traced to several older programming languages, including
C. Unlike C, Go is strongly typed, supports low-cost microthreading through go keywords prefixed to function
calls, has function calls prefixed with the defer keyword that run between function returns and resumption of
execution in the caller, allows multiple return values from functions, offers automatic memory management with
run-time garbage collection, lacks a macro preprocessor, has no comma operator for evaluation synchronization,
and has no equivalent of the volatile type qualifier of C.

Unlike most other programming languages, Go always initializes all program variables: zero for numerics, and
empty for lists and strings. Explicit initializers can be given if needed.

The go and gccgo compilers have been ported to most current platforms, from mobile devices to supercomput-
ers, and the language designers guarantee upward compatibility. Go programs can therefore be written to run

1Addison-Wesley (2016), xvii + 380 pages, ISBN-10 0-13-419044-0, ISBN-13 978-0-13-419044-0, LCCN QA76.73.G63 D66 2016.
2Available at https://golang.org/ref/spec, along with many other resources at the site.

G-1 [946↕947]

https://golang.org/ref/spec

G-2 [946↕947] Appendix G. Go interface

everywhere without source code changes, and with the expectation that the code will remain acceptable, and with
the same meaning, to future versions of the language and compilers.

G.2 Go language summary

Each Go source file declares a package name to which the following source code belongs, but only functions and
variables that begin with an uppercase letter are exported, allowing them to be visible in code in other packages.

Comments in Go are like those in C99, and do not nest: // begins a comment that extends to the end of the
current line, and /* ... */ brackets a possibly multiline comment.

Statements in Go are normally on separate lines, and do not require terminating semicolons, as C does.
Semicolons are needed in Go only when several short statements appear on a single source line.

Signed and unsigned integer types in Go match current hardware, and are like those in many other modern
programming languages, including C: int8, int16, int32, int64, uint8, uint16, uint32, and uint64. Go also has
platform-dependent generic integer types int and uint: they correspond to 32-bit integers on machines with a 32-bit
address space, and to 64-bit integers when the address size is 64 bits.

Go has a Boolean type, bool, with values true and false. Variables of that type occupy one byte of storage,
even though only one bit is needed. Unlike C, bool values in Go cannot be coerced to integer values by typecasts.

For floating-point arithmetic, Go provides only two types: float32 and float64. Its mathematical function
support is largely modeled on the double functions of the C library.

Type declarations in Go are reversed from the practice in C. In Go, they consist of the var keyword, followed
by a comma-separated list of variables, followed by a data type, as in these examples:

var x, y, z float64 /* Go-style scalars */
var u [10]int // Go-style vector
var v [25]int // Go-style vector

Equivalent declarations in C look like this:

double x, y, z; /* C-style scalars */
int u[10], v[25]; /* C-style vectors */

In Go, strings are always stored in the UTF-8 encoding of the Unicode character set. Each Unicode code point,
which humans would call a character or a glyph, is called a rune in Go, and requires from one to four bytes. Because
the ASCII character set occupies the first 128 positions in Unicode, all existing computer files in ASCII are already
UTF-8 encoded. Unlike C, strings in Go are not terminated with a NUL character (’\0’); any Unicode code point,
including NUL, is valid in a Go string, which is an immutable object with an address and a length.

The UTF-8 encoding algorithm guarantees that no multibyte code point contains a NUL byte, so unless the Go
programmer has intentionally inserted such a byte into a string, premature termination of strings passed to C code
cannot happen.

Go permits any Unicode code point classed as a letter or digit to be used in identifier names, although such
practices are expected to be uncommon in software developed in parts of the world that require only the traditional
unaccented Latin letters in their language alphabets.

Arrays and strings in Go are indexed from 0, and substrings can be selected with a following [i:j] selector,
which means elements or runes from positions i to j - 1. Either, or both, of the limits may be omitted in taking a
substring of a string s, in which case 0 and len(s), respectively, are assumed. Thus, s[3:7], s[3:], s[:4], and
s[:] are all valid, even when s is replaced by a quoted string constant. It is a fatal compile-time, or run-time, error
to index a string or array outside its bounds.

The string concatenation operator in Go is the plus sign, and it can be used for both constant and variable
strings. Thus, "ab" + "cd" is a new string with the value "abcd".

Here is a traditional example of what a simple Go program looks like:

% cat hello.go
// This is a simple program that prints a greeting.
package main

G.3. Numbers in Go G-3 [946↕947]

import "fmt"

/* This is a comment */
func main() {

fmt.Println("Hello, World ... this is the Go language")
}

It can be compiled and run on UNIX-like systems with either of these commands:

% go run hello
Hello, World ... this is the Go language

% gccgo -g hello.go && ./a.out
Hello, World ... this is the Go language

The package statement is mandatory, and its name must be main for any file that contains a top-level main
program.

The import statement is analogous to the preprocessor directive #include in C. Header files in C are almost
always text files, but imported packages in Go are compiled binary files. The import statement may specify a
single quoted string, or else a parenthesized list of strings separated by newlines or semicolons. However, unlike
C, Go requires that each imported package be used in the source code. It does so to simplify dependency checking
for the go build system, which in simple cases can replace the UNIX make tool.

The import statement can have an alternative form where an alias is prefixed to a package name:

import f "fmt"
import m "math"
...
f.Printf("m.Sqrt(2) = %.16g\n", m.Sqrt(2))

However such aliasing is rarely needed, or desirable, because standard Go package names tend to be short.
The position of the open brace in a compound statement is significant in Go: it must be on the same line as the

statement to which it belongs. In practice, that means that matching braces do not align vertically, making careful
code formatting and indenting advisable. The command go fmt can be used to prettyprint source code files into a
standard form.

Go has a powerful string formatting package that enhances the offerings of C’s printf() family, and the
function call fmt.Println() illustrates external package identification, and the capitalization of exported names.

Unlike C, Go main programs do not return an explicit value to the operating system: the return value
available to a subsequent shell command is normally zero. You can return a nonzero value with a final statement
os.Exit(49) provided that os appears in an import statement. Curiously, with the go run command, that value
is reported in an output line exit status 49 and a return code of 1. With the gccgo compiler, no status line is
printed, and the return code is 49. However, this alternative approach of first building, then running, the program
makes the behavior consistent:

% go build hello-with-exit

% ./hello-with-exit ; echo $status
Hello, World ... this is the Go language
49

G.3 Numbers in Go

In C, C++, C#, Fortran, Java, and many other languages, the size or precision of numeric constants is specified by a
suffix on the constant. Thus, in C, we might define symbolic names like this:

G-4 [946↕947] Appendix G. Go interface

const float PI_32 = 3.14159265F;
const double PI_64 = 3.1415926535897932;
const __float80 PI_80 = 3.14159265358979323846W;
const __float128 PI_128 = 3.14159265358979323846264338327950288Q;

const uint8_t UINT8_MAX = 255U;
const uint16_t UINT16_MAX = 65536U;
const uint32_t UINT32_MAX = 4294967295UL;
const uint64_t UINT64_MAX = 18446744073709551615ULL;

Go lacks numeric type suffixes, and infers precision from the constants themselves, except that integer constants
are treated as type int unless cast to a different size.

Here is a sample program and its output that illustrates the differences:

% cat numbers.go
package main

import "fmt"

func main() {
PI_32 := 3.141_592_65
PI_64 := 3.141_592_653_589_793_2
PI_XX := 3.141_592_653_589_793_238_462_643_383_279_502_88

ui8_max := uint8(255)
ui16_max := uint16(65_535)
ui32_max := uint32(4_294_967_295)
ui64_max := uint64(18_446_744_073_709_551_615)

fmt.Printf("ui8_max is %20d (%#x)\n", ui8_max, ui8_max)
fmt.Printf("ui16_max is %20d (%#x)\n", ui16_max, ui16_max)
fmt.Printf("ui32_max is %20d (%#x)\n", ui32_max, ui32_max)
fmt.Printf("ui64_max is %20d (%#x)\n", ui64_max, ui64_max)

fmt.Printf("PI_32 is %.8g\n", PI_32)
fmt.Printf("PI_64 is %.16g\n", PI_64)
fmt.Printf("PI_XX is %.25g\n", PI_XX)

fmt.Printf("PI_32 is %.g (no length field)\n", PI_32)
fmt.Printf("PI_64 is %.g (no length field)\n", PI_64)
fmt.Printf("PI_XX is %.g (no length field)\n", PI_XX)

}

% go run numbers
ui8_max is 255 (0xff)
ui16_max is 65535 (0xffff)
ui32_max is 4294967295 (0xffffffff)
ui64_max is 18446744073709551615 (0xffffffffffffffff)
PI_32 is 3.1415927
PI_64 is 3.141592653589793
PI_XX is 3.141592653589793115997963
PI_32 is 3 (no length field)
PI_64 is 3 (no length field)
PI_XX is 3 (no length field)

G.4. Simple interface from Go to C G-5 [946↕947]

Notice that although PI_XX is assigned a long numeric constant, its precision is limited by its default 64-bit type,
float64, and the extra digits printed do not match the original constant.

Go permits digit-separating underscores in numbers, although its output formatting provides no options to
produce them. Unlike many languages, Go allows the most negative 32- and 64-bit signed integer values to be
written in source code: -2_147_483_648 and -9_223_372_036_854_775_808.

The Go := operator used in our test program is a short declaration that declares a variable with the type of
the expression on the right-hand side, and initializes it with the value of that expression. It is illegal to use that
operator more than once for the same variable in the current scope in the function.

For the integer variables, if strong typing were not required, then we could have omitted the type casts, except
for that for ui64_max, because the value is too big for a 64-bit signed integer. The cast for ui32_max would still be
needed, however, on a system where int is a 32-bit size.

Alternatively, we could replace the short declarations with code like this:

const PI_32 = 3.141_592_74
const PI_64 = 3.141_592_653_589_7931
const PI_XX = 3.141_592_653_589_793_238_462_643_383_279_502_884_197_169_399_375_105
const ui8_max = uint8(255)
const ui16_max = uint16(65_535)
const ui32_max = uint32(4_294_967_295)
const ui64_max = uint64(18_446_744_073_709_551_615)

That is better practice, because it prevents reassignment with different values, and might offer better opportunities
for compiler optimizations.

The Go Programming Language Specification says this about the evaluation of constant numeric expressions:

Constant expressions are always evaluated exactly; intermediate values and the constants them-
selves may require precision significantly larger than supported by any predeclared type in the lan-
guage.

G.4 Simple interface from Go to C

Go has a pseudo-package named C that is handled specially by the go compilers from both Google and from gcc
builds; at the time of writing this, it is not supported at all by the gccgo compiler. Here is a short example of a
small test program and its execution, followed by commentary:

% cat go-to-c-1.go
// Package go-to-c-1 demonstrates how to call the C library sqrt()
// function from Go.
package main

import (
"fmt"
"math"

)

// #cgo LDFLAGS: -lm
// #include <math.h>
// double alt_sqrt(double x) { return (sqrt(x)); }
import "C"

func main() {
fmt.Printf("Go says that sqrt(2) is %.16g\n", math.Sqrt(2))
fmt.Printf("C says that sqrt(2) is %.16g\n", C.sqrt(C.double(2)))

G-6 [946↕947] Appendix G. Go interface

fmt.Printf("C says that alt_sqrt(2) is %.16g\n", C.alt_sqrt(C.double(2)))

fmt.Printf("C says that sqrt(2) is %.16g\n", C.sqrt(2))
}

% go run go-to-c-1
Go says that sqrt(2) is 1.414213562373095
C says that sqrt(2) is 1.414213562373095
C says that alt_sqrt(2) is 1.414213562373095
C says that sqrt(2) is 1.414213562373095

We need the math package to access the Go math library repertoire, and its square-root function must be invoked
as math.Sqrt().

The comment block that precedes the import "C" statement contains C code in either comment style, with
no blank lines between the comment and the import keyword. That C code must provide prototypes for any
functions needed from that language, most easily done via standard header files. However, for this short example,
we could have replaced the #include directive with the prototype double sqrt(double);.

When additional libraries, or compiler options, are needed for the C functions, they must be specified in the
special comments following the #cgo directive as variable : value(s) settings, most commonly with CFLAGS for
compiler flags, and LDFLAGS for loader/linker flags. The go compiler imposes strong restrictions on acceptable
values for such variables, but they do not affect us here.

In Go code, each reference to a C constant, variable, or function must be identified with a language prefix and
for values, a C type qualifier, unless the function prototypes allow the argument types to be inferred by the go
compiler. Thus, we wrote the last output statement using the shorter form, C.sqrt(2).

G.5 The Go interface to the mathcw library

The preceding section showed that the simple case of passing scalar arguments from Go to C is reasonably easy
to accomplish. However, many of the functions in the mathcw library have character string, pointer, and array
arguments, and we have not yet shown how they are handled.

Because Go is strongly typed, the size of an array is part of its type: you cannot pass a 4-element vector to a
function that expects a vector of a different fixed size. When the sizes match, a copy is passed to the function, so
any changes to the array that are made inside the function are lost on return to the caller.

Arrays are therefore avoided in most Go programs, and replaced by slices. A slice is a special structure that
contains a pointer to the contiguous array data, plus a current length, and a maximum capacity. Slices are first-class
objects that can be assigned values, passed as arguments, returned from functions, and dynamically resized.

Here is a test program and its output to illustrate some of the features of slices:

% cat slice.go
package main

import "fmt"

func main() {
v := []float64 { 3, 14, 159, 2653, 5897, 93238, 462643, 3832795 }
w := make([]float64, 3, 15)
x := w

fmt.Printf("v = %v\n", v)
fmt.Printf("len(v) = %v\n", len(v))
fmt.Printf("cap(v) = %v\n\n", cap(v))

fmt.Printf("w = %v\n", w)

G.5. The Go interface to the mathcw library G-7 [946↕947]

fmt.Printf("len(w) = %v\n", len(w))
fmt.Printf("cap(w) = %v\n\n", cap(w))

fmt.Printf("x = %v\n", x)
fmt.Printf("len(x) = %v\n", len(x))
fmt.Printf("cap(x) = %v\n\n", cap(x))

w = v

fmt.Println("After slice assignment, w = v, we have:\n")

fmt.Printf("w = %v\n", w)
fmt.Printf("len(w) = %v\n", len(w))
fmt.Printf("cap(w) = %v\n\n", cap(w))

fmt.Println("Grow an array by appending values:\n")

x = append(x, 100)
x = append(x, 200)
x = append(x, 300)

fmt.Printf("x = %v (after 3 appends)\n", x)
fmt.Printf("len(x) = %v\n", len(x))
fmt.Printf("cap(x) = %v\n\n", cap(x))

fmt.Println("Do more appends\n")

for i := 0; i < 15; i++ { x = append(x, float64(i)) }

fmt.Printf("x = %v (after 15 more appends)\n", x)
fmt.Printf("len(x) = %v\n", len(x))
fmt.Printf("cap(x) = %v\n\n", cap(x))

}

% go run slice
v = [3 14 159 2653 5897 93238 462643 3.832795e+06]
len(v) = 8
cap(v) = 8

w = [0 0 0]
len(w) = 3
cap(w) = 15

x = [0 0 0]
len(x) = 3
cap(x) = 15

After slice assignment, w = v, we have:

w = [3 14 159 2653 5897 93238 462643 3.832795e+06]
len(w) = 8
cap(w) = 8

G-8 [946↕947] Appendix G. Go interface

Grow an array by appending values:

x = [0 0 0 100 200 300] (after 3 appends)
len(x) = 6
cap(x) = 15

Do more appends:

x = [0 0 0 100 200 300 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14] (after 15 more appends)
len(x) = 21
cap(x) = 30

Notice that no loop over elements is required to assign one slice to another, and slice assignment creates a new
slice, rather than overwriting a previous value. Even when there is capacity to do so, you cannot assign a slice
element with an index greater than or equal to the length. However, the append() function can grow the slice, and
the last set of operations shows that the slice is automatically reallocated with a larger capacity as needed.

We printed entire slices with the %v format item, a powerful feature of the fmt package. An advanced feature of
the Go language is the concept of reflection: it allows writing of generic code that can determine types and layout
of function arguments, and produce suitably tailored output. Such code is needed to support %v formatting.

Slices are what we need to pass vector data between Go and C functions. Here is a wrapper function for a
member of the mathcw library that does that:

import "unsafe"
...
// void fsplit(double result[/* 2 */], double x);
import "C"
...
func Fsplit(v []float64, x float64) {

C.fsplit((*C.double)(unsafe.Pointer(&v[0])), C.double(x))
}

The first argument to the Go function Fsplit() is a slice of type float64, a composite structure. The C function
fsplit() expects a pointer to a vector of double elements (only two are needed here), and that pointer is computed
from the address of the first element, &v[0], coerced by unsafe.Pointer() from a pointer to float64 to a pointer
to an arbitrary memory location, then further coerced by the typecast (*C.double) to the type expected by the C
function. It is important to note that no numeric data conversion is required: the two languages just have different
names for the same storage format and layout. The double casting is needed to subvert the strong typing in
Go. The package name unsafe is intentionally descriptive: it warns that the protection offered by strong typing
has been overridden, and things might go wrong. The parentheses around the call to unsafe.Pointer() are
mandatory.

Every running Go program has a garbage collector thread that recovers allocated memory that can no longer be
reached. The collector can also do storage compaction that moves stack variables. That could change the address of
the data for v[], invalidating references made to it inside the C function. That issue caused considerable discussion
on Go developer lists in 2015, but in later compiler releases, it appears that the problem is resolved by wrapping
the call to the C function in another function that temporarily suspends garbage collection until the C function
returns.

The last interlanguage issue that we must deal with is the passing of UTF-8 character strings from Go to C
where the expectation is that each byte holds exactly one character, and that the string is NUL-terminated. Here, an
explicit data conversion is required, and it is done as in this wrapper function for another member of the mathcw
library:

// double (nan)(const char *);
import "C"

G.6. Examples of the Go MathCW package G-9 [946↕947]

...
func Nan (s string) float64 {

cs := C.CString(s)
defer C.free(unsafe.Pointer(cs))
return (float64(C.nan(cs)))

}

The short declaration of cs dynamically creates a new string suitable for use in C with a copy of the data in the Go
string s, and that new string is in the C memory space, the heap, managed by malloc() and free(). That puts it
safely out of reach of the Go garbage collector. However, we only need it for the duration of the call to C.nan(),
after which it can be freed. We neatly avoid creation of a temporary variable to hold the function return value by
using the defer keyword on the call to C.free().

Tests of passing Go strings with Unicode characters to C show that the non-ASCII runes appear as bytes with
values in 128. . . 255 (a consequence of the UTF-8 encoding design), and any embedded NUL runes are preserved in
the C string, effectively terminating it in normal string operations. The string received by the C function has the
same UTF-8 byte sequence as in the Go caller.

G.6 Examples of the Go MathCW package

In this section, we show how the MathCW package is used in Go programs. Because the library location is embedded
in the compiled interface, nothing additional needs to be specified by the user: the usual go build and go run
commands just need the name(s) of the user’s Go file(s).

Most of our examples use functions that are available in both the native Go math package, and in the MathCW
package, so that computed results from the Go and C languages can be compared.

G.6.1 Floating-point access to fraction and exponent

The first test program shows results in both decimal and binary to allow verification that the operations provided
by Frexp() and Ldexp() are exact: the exponents change, but the significand bits must not.

The Go math library offers similar functions to those in the C library, although the calling sequences sometimes
differ, as they do in this example, where Frexp() receives only a single argument, but returns a pair of values that
correspond to the fraction and exponent.

% cat frexp.go
// Package frexp demonstrates frexp() and ldexp() from the native
// Go math library, as well as from the MathCW library.
package main

import "fmt"
import "math"
import "MathCW"

func main() {
var e32 int32
var nexp int
var f32, x32 float32
var f64, frac, x64 float64

fmt.Println("Demonstration of 32-bit frexp() and ldexp()\n")

x32 = -0x1.fadecap-32

fmt.Printf(" x32 = %#x\n", x32)

G-10 [946↕947] Appendix G. Go interface

frac, nexp = math.Frexp(float64(x32))
f32 = MathCW.Frexpf(x32, &e32)

fmt.Printf(" math.Frexp (float64(x32)) = (%#x, %d)\n", frac, nexp)
fmt.Printf("MathCW.Frexpf(x32, &e32) = (%#x, %d)\n", f32, e32)

fmt.Println()

fmt.Printf(" math.Ldexp (%#x, %d) = %#x\n", frac, nexp, math.Ldexp (frac, nexp))
fmt.Printf("MathCW.Ldexpf(%#x, %d) = %#x\n", f32, e32, MathCW.Ldexpf(f32, e32))

fmt.Println()

fmt.Println("Demonstration of 64-bit frexp() and ldexp()\n")

x64 = -0x1.beadcafefeedep-64

fmt.Printf(" x64 = %#x\n", x64)

frac, nexp = math.Frexp(x64)
f64 = MathCW.Frexp(x64, &e32)

fmt.Printf(" math.Frexp(x64) = (%#x, %d)\n", frac, nexp)
fmt.Printf("MathCW.Frexp(x64, &e32) = (%#x, %d)\n", f64, e32)

fmt.Println()

fmt.Printf(" math.Ldexp(%#x, %d) = %#x\n", frac, nexp, math.Ldexp(frac, nexp))
fmt.Printf("MathCW.Ldexp(%#x, %d) = %#x\n", f64, e32, MathCW.Ldexp(f64, e32))

}

% go run frexp
Demonstration of 32-bit frexp() and ldexp()

x32 = -0x1.fadecap-32
math.Frexp (float64(x32)) = (-0x1.fadecap-01, -31)

MathCW.Frexpf(x32, &e32) = (-0x1.fadecap-01, -31)

math.Ldexp (-0x1.fadecap-01, -31) = -0x1.fadecap-32
MathCW.Ldexpf(-0x1.fadecap-01, -31) = -0x1.fadecap-32

Demonstration of 64-bit frexp() and ldexp()

x64 = -0x1.beadcafefeedep-64
math.Frexp(x64) = (-0x1.beadcafefeedep-01, -63)

MathCW.Frexp(x64, &e32) = (-0x1.beadcafefeedep-01, -63)

math.Ldexp(-0x1.beadcafefeedep-01, -63) = -0x1.beadcafefeedep-64
MathCW.Ldexp(-0x1.beadcafefeedep-01, -63) = -0x1.beadcafefeedep-64

G.6. Examples of the Go MathCW package G-11 [946↕947]

G.6.2 Computing trigonometric functions

Our second example computes the sine and cosine of a number with both mathcw and Go libraries:

% cat sincos.go
package main

import "fmt"
import "math"
import "MathCW"

func main() {
var c, s, x float64

fmt.Println("Demonstration of 64-bit sincos()\n")

x = 3.0 * (math.Pi / 8.0)
fmt.Printf(" x = %g\n", x)
fmt.Printf(" = %#x\n", x)
fmt.Printf(" = (3/8) * Pi\n\n")

fmt.Println("Expect sin((3/8) * Pi) = 0.923_879_532_511_286_756_128_...")
fmt.Println(" = 0x1.d906_bcf3_28d4_628a_fcc2_0463_...p-1\n")

fmt.Println("Expect cos((3/8) * Pi) = 0.382_683_432_365_089_771_728_...")
fmt.Println(" = 0x1.87de_2a6a_ea96_2d1a_6245_854b_...p-2\n")

s, c = math.Sincos(x)
fmt.Printf(" math.sincos(x) = (%.17f, %.17f)\n", s, c)
fmt.Printf(" = (%#x, %#x)\n\n", s, c)

MathCW.Sincos(x, &s, &c)
fmt.Printf("MathCW.Sincos(x, ss, cc) = (%.17f, %.17f)\n", s, c)
fmt.Printf(" = (%#x, %#x)\n", s, c)

}

% go run sincos
Demonstration of 64-bit sincos()

x = 1.1780972450961724
= 0x1.2d97c7f3321d2p+00
= (3/8) * Pi

Expect sin((3/8) * Pi) = 0.923_879_532_511_286_756_128_...
= 0x1.d906_bcf3_28d4_628a_fcc2_0463_...p-1

Expect cos((3/8) * Pi) = 0.382_683_432_365_089_771_728_...
= 0x1.87de_2a6a_ea96_2d1a_6245_854b_...p-2

math.sincos(x) = (0.92387953251128674, 0.38268343236508984)
= (0x1.d906bcf328d46p-01, 0x1.87de2a6aea964p-02)

MathCW.Sincos(x, s, c) = (0.92387953251128674, 0.38268343236508984)
= (0x1.d906bcf328d46p-01, 0x1.87de2a6aea964p-02)

G-12 [946↕947] Appendix G. Go interface

G.6.3 Decoding floating-point fields

Our third example does not interface to the mathcw library at all, but is nevertheless useful in working with
floating-point numbers.

The C library provides functions for decomposing and reconstructing floating-point values from their sign,
exponent, and significand fields, with signbit(), frexp(), and ldexp(). Go has similar functions math.Signbit(),
math.Frexp(), and math.Ldexp(), although the argument conventions for the first two differ from their compan-
ions in C.

Sometimes, however, it is useful for debugging and analysis purposes to be able to access the three fields and
display them in various number bases. The package fmtfloat included with the mathcw software provides a set of
string-returning functions to do that. A companion testfmtfloat.go file exercises those functions with important
special values in 32-bit and 64-bit floating-point arithmetic.

We can use the go doc command to display the brief package documentation, along with prototypes for all of
its public constants and functions:

% go doc fmtfloat
package fmtfloat // import "fmtfloat"

Package fmtfloat provides functions for decoding and formatting fields of
floating-point numbers. They each return a dynamic string that can be used
for printing such numbers in a form that displays their encoding in storage.

const Bias32 int64 = 0x7f
const Bias64 int64 = 0x3ff
func Bitfields32(x float32) string
func Bitfields64(x float64) string
func Decfields32(x float32) string
func Decfields64(x float64) string
func Hexfields32(x float32) string
func Hexfields64(x float64) string
func Octfields32(x float32) string
func Octfields64(x float64) string

The two-sentence paragraph was extracted from leading commands immediately preceding the package
statement, but the remainder of the output was automatically produced by go doc from the source code, without
any need for the Go programmer to duplicate that information.

We can use go doc to extract documentation of a particular function in a package:

% go doc fmtfloat Hexfields32
package fmtfloat // import "fmtfloat"

func Hexfields32(x float32) string
Hexfields32 decomposes a float32 value into its three fields in hexadecimal.

We can dig even further and ask for the function source code as well:

% go doc -src fmtfloat Hexfields32
package fmtfloat // import "fmtfloat"

// Hexfields32 decomposes a float32 value into its three fields in hexadecimal.
func Hexfields32(x float32) string {

var h int64
b := fmt.Sprintf("%.032b", math.Float32bits(x))
e, _ := strconv.ParseInt(b[1:9], 2, 32)
s, _ := strconv.ParseInt(b[9:], 2, 32)

G.6. Examples of the Go MathCW package G-13 [946↕947]

if e == 0 {
h = 0

} else {
h = 1

}
return (fmt.Sprintf("sign : %s exponent : %#02x (2-to-(%+04d)) \

significand : 0x%d.%06xp0",
b[0:1], e, e-Bias32+1-h, h, s))

}

The displayed code differs somewhat from that in the file fmtfloat.go: it has been automatically prettyprinted
into standard Go code layout, with one long line wrapped at a backslash-newline to fit the page.

You can use the same commands to extract documentation and source code for any standard Go package: the
system fetches needed data from the Web if it cannot be found locally. Here is a short example:

% go doc math Signbit
package math // import "math"

func Signbit(x float64) bool
Signbit reports whether x is negative or negative zero.

The Go documentation system provides a simple solution to a common problem in all programming languages
and software projects, and it is well worthwhile for Go programmers to make use of. We showed only text output
here, but the system can also produce attractive HTML pages for display in Web browsers.

G.6.4 Accurate vector summation

Our fourth, and last, example uses the mathcw function vsum() to compute a sum of vector elements, with an error
estimate.

We choose the vector carefully so that its sum cannot be represented exactly in a 64-bit floating-point value,
but is easily computed by hand. Recall that the sum of the first n integers is (n(n + 1))/2, so we can predict that
the computed sum with n = 10 should be close to (10 × 11)/2 = 55, plus a minor perturbation from the small
elements, each with only a single nonzero bit.

% cat vsum.go
// Package vsum demonstrates vector summation with
// error accumulation, using the MathCW library.
package main

import "fmt"
import "fmtfloat"
import "math"
import "MathCW"

func main() {
var err, sum float64
v := []float64 { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

0x1p-45, 0x1p-46, 0x1p-47, 0x0p-48,
0x1p-49, 0x1p-50, 0x1p-51, 0x1p-52,
0x1p-53, 0x1p-54, 0x1p-55, 0x1p-56,
0x1p-57, 0x1p-58, 0x1p-59, 0x1p-60 }

sum = MathCW.Vsum(&err, int32(len(v)), v)

G-14 [946↕947] Appendix G. Go interface

fmt.Printf("len(v) = %d\n", len(v))
fmt.Printf("v = %#.3v\n", v)
fmt.Printf(" = %#x\n", v)
fmt.Printf("sum = %g = %#x\n", sum, sum)
fmt.Printf("err = %g = %#x\n", err, err)

fmt.Println()

fmt.Printf("sum bits = %#.064b\n", math.Float64bits(sum))
fmt.Printf("err bits = %#.064b\n", math.Float64bits(err))

fmt.Println()

fmt.Printf("sum bit fields = %s\n", fmtfloat.Bitfields64(sum))
fmt.Printf("err bit fields = %s\n", fmtfloat.Bitfields64(err))

fmt.Println()

fmt.Printf("sum dec fields = %s\n", fmtfloat.Decfields64(sum))
fmt.Printf("err dec fields = %s\n", fmtfloat.Decfields64(err))

fmt.Println()

fmt.Printf("sum oct fields = %s\n", fmtfloat.Octfields64(sum))
fmt.Printf("err oct fields = %s\n", fmtfloat.Octfields64(err))

fmt.Println()

fmt.Printf("sum hex fields = %s\n", fmtfloat.Hexfields64(sum))
fmt.Printf("err hex fields = %s\n", fmtfloat.Hexfields64(err))

}

% go run vsum
len(v) = 27
v = []float64{0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 2.84e-14, 1.42e-14, \

7.11e-15, 0, 1.78e-15, 8.88e-16, 4.44e-16, 2.22e-16, \
1.11e-16, 5.55e-17, 2.78e-17, 1.39e-17, 6.94e-18, \
3.47e-18, 1.73e-18, 8.67e-19}

= [0x0.000p+00 0x1.000p+00 0x1.000p+01 0x1.800p+01 0x1.000p+02 \
0x1.400p+02 0x1.800p+02 0x1.c00p+02 0x1.000p+03 0x1.200p+03 \
0x1.400p+03 0x1.000p-45 0x1.000p-46 0x1.000p-47 0x0.000p+00 \
0x1.000p-49 0x1.000p-50 0x1.000p-51 0x1.000p-52 0x1.000p-53 \
0x1.000p-54 0x1.000p-55 0x1.000p-56 0x1.000p-57 0x1.000p-58 \
0x1.000p-59 0x1.000p-60]

sum = 55.00000000000005 = 0x1.b800000000007p+05
err = 3.5518463170625125e-15 = 0x1.ffep-49

sum bits = 0b0100000001001011100111
err bits = 0b00111100111011111111111000

sum bit fields = sign : 0 exponent : 0b10000000100 (2-to-(+0005)) \
significand : 0b1.1011100111p0

err bit fields = sign : 0 exponent : 0b01111001110 (2-to-(-0049)) \

G.7. Calling Go functions from C G-15 [946↕947]

significand : 0b1.11111111111000p0

sum dec fields = sign : 0 exponent : 1028 (2-to-(+0005)) \
significand : 1.7187500000000016

err dec fields = sign : 0 exponent : 0974 (2-to-(-0049)) \
significand : 1.99951171875

sum oct fields = sign : 0 exponent : 0o02004 (2-to-(+0005)) \
significand : 0o1.560000000000000034p0

err oct fields = sign : 0 exponent : 0o01716 (2-to-(-0049)) \
significand : 0o1.777600000000000000p0

sum hex fields = sign : 0 exponent : 0x404 (2-to-(+0005)) \
significand : 0x1.b800000000007p0

err hex fields = sign : 0 exponent : 0x3ce (2-to-(-0049)) \
significand : 0x1.ffe0000000000p0

G.7 Calling Go functions from C

The Go build system permits preparation of source files that can be compiled into a shared library usable by C
programs. As a short example, we show a Go file that makes three math library functions available for use in a C
program, prefixing names with Go_ to avoid collisions with normal C library functions, permitting both to be used
in the same program, and following the go doc command conventions:

% cat gomath32.go
// Package gomath32 supplies an interface from Go to C for some
// mathematical functions. Building the package creates both a shared
// library, libgomath32.so, and a C/C++ header file, libgomath32.h.
//
// Usage:
// go build -buildmode c-shared -o libgomath32.so gomath32.go
package main

import "C"
import "math"

// Interface from Go to C for expf().
//
//export Go_expf
func Go_expf(x float32) float32 { return (float32(math.Exp(float64(x)))) }

// Interface from Go to C for logf().
//
//export Go_logf
func Go_logf(x float32) float32 { return (float32(math.Log(float64(x)))) }

// Interface from Go to C for tanf().
//
//export Go_tanf
func Go_tanf(x float32) float32 { return (float32(math.Tan(float64(x)))) }

func main() { }

G-16 [946↕947] Appendix G. Go interface

The leading comments show how the shared library is created. The import "C" statement is required, even
though there are no visible references to that package. The //export comments that immediately precede function
definitions make their names visible in the shared library.

Because the Go math library offers functions only in the longer floating-point type, our interface wrappers
have to convert library function results to the shorter type for the wrapper return value.

The C test program for those functions looks like this:

% cat mathtest.c
/*
** Usage:
** cc mathtest.c -L. -Wl,-rpath,. -lgomath32 -lm && ./a.out
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>

#define PRINTF (void)printf

extern float Go_expf(float);
extern float Go_logf(float);
extern float Go_tanf(float);

int
main(void)
{

float x, y;

x = 0.5F;

y = expf(x);
PRINTF("C expf(%.3f) = %12.9g = %.6a\n", x, y, y);

y = Go_expf(x);
PRINTF("Go expf(%.3f) = %12.9g = %.6a\n", x, y, y);

PRINTF("\n");

y = logf(x);
PRINTF("C logf(%.3f) = %12.9g = %.6a\n", x, y, y);

y = Go_logf(x);
PRINTF("Go logf(%.3f) = %12.9g = %.6a\n", x, y, y);

PRINTF("\n");

y = tanf(x);
PRINTF("C tanf(%.3f) = %12.9g = %.6a\n", x, y, y);

y = Go_tanf(x);
PRINTF("Go tanf(%.3f) = %12.9g = %.6a\n", x, y, y);

return (EXIT_SUCCESS);

G.8. Limitations of Go and its math library G-17 [946↕947]

}

Because the program is short, we supplied our own prototypes for the Go functions. We could instead have used
the generated header file libgomath32.h that provides type definitions to map from Go to C or C++, and function
prototypes for the complete interface.

The leading comments show how the two languages are combined into an executable program, and run,
producing this output:

C expf(0.500) = 1.64872122 = 0x1.a61298p+0
Go expf(0.500) = 1.64872122 = 0x1.a61298p+0

C logf(0.500) = -0.693147182 = -0x1.62e430p-1
Go logf(0.500) = -0.693147182 = -0x1.62e430p-1

C tanf(0.500) = 0.546302497 = 0x1.17b4f6p-1
Go tanf(0.500) = 0.546302497 = 0x1.17b4f6p-1

G.8 Limitations of Go and its math library

At the beginning of this appendix, we briefly mentioned some of the features of Go that should be of interest to
programmers of traditional languages like C and Fortran.

There are many powerful features of Go that make programming convenient, faster, and less error prone,
notably enhanced output formatting, dynamic strings and garbage collection, string concatenation, and array
assignments. Once the syntactical differences were mastered, this author found coding in Go a pleasant experience,
with fewer logic errors than would be likely in C.

However, there are glaring deficiencies of Go as well:

• The absence of 80-bit and 128-bit floating-point numbers is disappointing, given that one, or both, have been
available in common hardware, and other programming languages, for more than four decades. Even if
many users of floating-point arithmetic concentrate primarily on the 32-bit and 64-bit formats, it is often
valuable for enhanced accuracy in internal routines to have access to wider formats.

• The Go math package addresses mainly 64-bit computation, yet there are several critical 32-bit functions that
cannot be correctly computed by coercions between the two sizes.

• The Go library exposes only one kind of NaN, hiding the distinction between quiet and signaling NaNs, and
giving no support for NaN payloads.

• There is no access to advanced features of IEEE 754 arithmetic, such as precision control, rounding mode
selection, choice between abrupt versus gradual underflow, and exception handling.

• Although division by zero is perfectly well defined in IEEE 754 arithmetic, the Google and gcc Go compilers
all refuse to compile code with such divisions. Instead, a minor rewrite is required:

// Fails to compile: error: division by zero
// func Inf64() float64 { return (1.0 / 0.0) }

func Inf64() float64 { var x float64; return (1.0 / x) }

In testing Go code written in support of the interface to the mathcw library, the author found two missing
features in GNU gccgo and go that are available in Google go: digit-separating underscores in numbers, and
hexadecimal floating-point constants. While the former are strongly desirable for readability, the lack of the latter
is a huge deficiency for accurate numerical programming. Once again, the programmer is faced with an inability
to specify numbers in code and data that are correct to the last bit.

G-18 [946↕947] Appendix G. Go interface

G.9 Summary

We have now covered all of the tools in Go that are needed to communicate with functions written in C in
the mathcw library. That library was carefully designed to minimize the number of argument types needed
for interlanguage communication. In particular, it does not use any data structures other than scalars and one-
dimensional arrays. With additional effort, it is possible to pass struct values between Go and C, but we do not
require that ability here.

We noted that the Go math library exploits multiple-value returns, such as for math.Frexp(), math.Lgamma(),
math.Modf(), and math.Sincos(). Doing so avoids the need for pointer arguments, which often have some peril.
However, we intentionally chose not to use such features in the mathcw interface, because it is essential that the
library be usable from many programming languages, and that its UNIX manual page documentation can be used
for all such languages, without having to document changes in calling sequences and return values.

The file mathcw.go available in the MathCW distribution is generated completely automatically by an awk
program that reads the carefully formatted C header file, mathcw.h, so that the package author has confidence
that the Go interface is free of human-caused errors. The file mathcw.go contains more than 550 Go functions
that can access all functions for real arithmetic in the mathcw library that have data type counterparts in both
languages. That library has more than 5100 functions, but all those without interface wrappers require C types
that are unavailable in Go.

	Go interface
	Go history
	Go language summary
	Numbers in Go
	Simple interface from Go to C
	The Go interface to the mathcw library
	Examples of the Go MathCW package
	Floating-point access to fraction and exponent
	Computing trigonometric functions
	Decoding floating-point fields
	Accurate vector summation

	Calling Go functions from C
	Limitations of Go and its math library
	Summary

