
THE REPRESENTATION THEORY OF GLn

We would like to say something about the representation theory of the following groups:

SLn(R),GLn(R), SLn(C),GLn(C).

Throughout this note, we will be interested in finite-dimensional representations. Hence-
forth, by a representation we mean a finite-dimensional one.

What we talk about when we talk about representations

For a finite group G, a representation on a complex vector space V is simply a group
homomorphism

G→ GL(V )

In this note, however, we are not dealing with finite groups. The following examples show
that we need to impose additional restrictions if we want to avoid pathological examples.

Example 1. G = SLn(R). Let σ be an embedding of R into C. Then

g 7→ σ(g)

is an n-dimensional representation of G. Note that most σ’s are discontinuous.

Example 2. G = GLn(R). Then

g 7→ |det g|
√

2

is a 1-dimensional representation (i.e. a character) of G.

Example 3. G = GLn(R). Then

g 7→
(

1 log|det g|
0 1

)
is a 2-dimensional representation of G.

Example 4. G = SLn(C). Let σ denote complex conjugation. Then

g 7→ σ(g)

is an n-dimensional representation of G.

Example 1 suggests that we should restrict our attention to continuous representations of
G, i.e. homomorphisms π : G→ GL(V ) for which the map G× V → V given

(g, v) 7→ π(g)v

is continuous.1 It turns out that all continuous finite-dimensional representations of G =
SLn(R) are automatically algebraic [2, 5], that is, the matrix entries of π(g) are rational
functions in g.

1On a finite-dimensional space, this condition is equivalent to the continuity of the map g 7→ π(g) from
G to the space of linear operators on V .



2

For G = GLn(R), this is not true, as demonstrated by examples 2 and 3 (in which the
representations are continuous — and moreover, smooth — but not algebraic). This suggests
that we should focus on algebraic representations of G.

Finally, GLn(C) and SLn(C) can be viewed as real Lie groups, but they also possess a complex
structure. When viewing them as complex Lie groups, we require their representations to
be holomorphic. It turns out that this is the same as requiring them to be algebraic [1].
Example 4 shows a rational representation of SLn(C) (viewed as a real Lie group) that is not
holomorphic.

Weyl’s unitary trick

Weyl’s key observation is that one can use the compact form of a group (or its Lie algebra)
to answers questions about representation theory. The unitary trick tells us that there is a
bijective correspondence between:

(1) algebraic representations of SLn(R);

(2) holomorphic representations of SLn(C);

(3) representations of sln(C);

(4) smooth (or equivalently, algebraic) representations of SU(n)

(see [4, Chapter II, §1]). Of course, the name of the unitary trick refers to part (4): since
SU(n) is irreducible, all its representations are unitary. An immediate consequence of this
result is that the representations in (1), (2), and (3) are also completely reducible. Weyl’s
unitary trick also reduces the problem of classifying irreducible algebraic representations of
SLn(R) and SLn(C) to the classification of sln(C)-representations. The irreducible represen-
tations of sln(C) are in turn classified by the theorem of the highest weight.

Representations of SLn(C) and SLn(R)

We can write the roots of sln(C) as vectors in Rn: they are given by ei−ej, i 6= j ∈ {1, . . . , n}.
(Here ei denotes the i-th standard basis vector for Rn.) With this identification, the weight
lattice is generated by elements

Li = (− 1

n
, . . . ,− 1

n
,
n− 1

n
,− 1

n
, . . . ,− 1

n
) = ei −

1

n

n∑
j=1

ej, i = 1, . . . , n.

The integral elements are thus given by Z-linear combinations

λ1L1 + · · ·+ λnLn.

Such an element is dominant precisely when λ1 ≥ . . . ≥ λn. Since
∑
Li = 0, we have

λ1L1+· · ·+λnLn = (λ1+k)L1+· · ·+(λn+k)Ln for any integer k. Thus (taking k = −λn) we
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may assume that λn = 0. To summarize, the irreducible representations of sln(C) correspond
bijectively to tuples of integers Λ = (λ1, . . . , λn−1) with

λ1 ≥ · · · ≥ λn−1 ≥ 0.

As a consequence of the above discussion about the unitary trick, this classifies the irreducible
representations of SLn(C) as well.

A concrete realization of the SLn(C)-representation corresponding to Λ can be obtained using
the Schur–Weyl duality, which we recall here. To each tuple Λ = (λ1, . . . , λn−1) as above
we may associate the corresponding irreducible representation of the symmetric group Sd,
where d =

∑
λi. Recall the construction of this representation: from the Young tableau

corresponding to Λ, we build the corresponding Young symmetrizer cΛ. The corresponding
representation of Sn is then realized by the natural action of Sd on the space C[Sd]cΛ (the
image of right multiplication by cΛ on the group algebra C[Sd]).

Now let V = Cn be the standard representation of SLn(C). Given Λ as above, we consider
the d-th tensor power of V :

V ⊗d = V ⊗ · · · ⊗ V.
This space comes equipped with commuting actions of Sd (say, on the right) and SLn(C) (on
the left). Since the actions commute, the space V ⊗dcΛ is SLn(C)-invariant, and one shows
that this is an irreducible representation of highest weight Λ, i.e.

λ1L1 + · · ·+ λn−1Ln−1.

We denote this representation by πΛ. The corresponding irreducible representation of SLn(R)
is realized on the same space, by restricting the SLn(C)-action.

See [3, §4,§6,§15] for a more detailed exposition of this construction.

Representations of GLn(C) and GLn(R)

The above construction essentially allows us to recover all irreducible representations of
GLn(C) and GLn(R); the only difference is that here we need to take into account the
determinant.

Observe that GLn(C) can be obtained by gluing SLn(C) and C× along the center:

GLn(C) = SLn(C)×Γn C×,

where Γn denotes the group of n-th roots of unity. To see this, note that the map C× ×
SLn(C)→ GLn(C) given by

(z, g) 7→ zg

is surjective, and its kernel is {(z, diag(z−1, . . . , z−1)}. Of course, diag(z−1, . . . , z−1) is an
element of SLn(C) precisely when zn = 1, so the kernel is indeed isomorphic to Γn.

Specifying an irreducible representation of GLn(C) thus amounts to choosing an irreducible
representation πΛ of SLn(C) and a (holomorphic) character of C× which agrees with the
representation πΛ on the group Γn. Note that every holomorphic character of C× is of the
form z 7→ zk for some integer k; if zk is a character which agrees with the representation
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πΛ, then all other characters are given by zk+nl, where l ∈ Z. To summarize, the irreducible
representations of GLn(C) are parametrized by pairs (Λ, l) where Λ is a tuple as above and
l is an integer.

There is another way of seeing this, which follows the construction from the previous section
more closely. We view V = Cn as a representation of GLn(C). Let Λ = (λ1, . . . , λn−1) be an
(n− 1)-tuple as before. Then V ⊗dcΛ is an irreducible representation of GLn(C). Moreover,
every representation of GLn(C) is obtained by twisting such a representation by a power of
the determinant. If we set

Λ + k = (λ1 + k, . . . , λn−1 + k, k),

for a non-negative integer k, then V ⊗dcΛ+k =
(
V ⊗dcΛ

)
⊗ (det)k.

Thus the irreducible representations of GLn(C) correspond to n-tuples (note the extra term!)
of integers Λ = (λ1, . . . , λn−1, λn) with

λ1 ≥ . . . ≥ λn−1 ≥ λn,

where the representation corresponding to Λ is V ⊗dcΛ if λn is non-negative, and
(
V ⊗dcΛ−λn

)
⊗

(det)λn when λn is negative.

As before, the irreducible representations GLn(R) are obtained by restricting those of GLn(C).
It is worth pointing out that, in contrast to the beginning of this section, we cannot view
GLn(R) as a quotient of R× × SLn(R) if n is even. Indeed, the map

(t, g) 7→ tg

is no longer surjective (multiplication by t scales the determinant by t2, so the image is the
set of all matrices of positive determinant). Consequently, we cannot obtain the irreducibles
by gluing together irreducible representation of SLn(R) with characters of R×. However, we
can salvage this approach by first inducing the irreducible representations of SLn(R) to the
group

SL±n (R) = {g ∈ GLn(R) : det g ∈ {±1}},
and then tensoring the resulting representations with characters of R+.

Representations of SLn(C) and GLn(C) as real Lie groups

Finally, we may also view SLn(C) and GLn(C) as real Lie groups. We thus allow represen-
tations such as the one appearing in Example 4.

Since SLn(C) is simply connected, its smooth (but not necessarily holomorphic) represen-
tations correspond to real-linear representations of sln(C), or equivalentnly, complex-linear
representations of the complexification, C⊗R sln(C). Every element of the complexification
can be uniquely written as 1⊗ x+ i⊗ y for x, y ∈ C; one checks that

1⊗ x+ i⊗ y 7→ (x+ iy, x+ iy)

is a C-isomorphism of Lie algebras C ⊗R sln(C) → sln(C) ⊕ sln(C). An irreducible repre-
sentation of sln(C)⊕ sln(C) is a tensor product of irreducible representations of the factors.
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One verifies this by using the unitary trick to translate this statement to the setting of
compact groups; the claim now follows from the fact that every irreducible representation of
SU(n)× SU(n) is a tensor product of irreducibles.

The irreducible representations of SLn(C) are thus parametrized by pairs of dominant integral
elements (Λ1,Λ2). If πΛ1 ⊗ πΛ2 is the corresponding representation of sln(C) ⊕ sln(C), it
restricts back to the original Lie algebra sln(C) as

x 7→ πΛ1(x)⊗ πΛ2(x)

(note the composition with complex conjugation in the second factor). To summarize, irre-
ducible representations of SLn(C) look like

πΛ1 ⊗ πΛ2 ,

where we use π to denote the complex conjugate of π. See [4, Chapter II, §3].

The situation for GLn(C) is analogous; every irreducible representation is given by tensor
product of two irreducible representations, one of which is holomorphic, and the other anti-
holomorphic (i.e. the complex conjugate of a holomorphic representation). As before, one
can deduce this from the corresponding classification of SLn(C)-representations: irreducible
representations of SLn(C) are obtained by tensoring SLn(C)-representations with characters
of C×; only this time, we are viewing C× as a real Lie group, so its characters are of the form

z 7→ zkzl, k, l ∈ Z.
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