The cohomology of $\operatorname{Out}\left(F_{r}\right)$ and the Eichler-Shimura isomorphism

Jim Conant, University of Tennessee
June 24, CIRM
joint with Martin Kassabov and Karen Vogtmann

Happy Birthday, Karen!

Moving to the Lie category

$$
P H^{*}\left(\ell_{\infty}^{+}\right)^{s p} \cong \bigoplus_{r=2}^{\infty} H_{*}\left(\text { Out }\left(F_{r}\right) ; \mathbb{Q}\right)
$$

Moving to the Lie category

$$
P H^{*}\left(\ell_{\infty}^{+}\right)^{s p} \cong \bigoplus_{r=2}^{\infty} H_{*}\left(\text { Out }\left(F_{r}\right) ; \mathbb{Q}\right)
$$

So we study the homology of Out via the Lie algebra ℓ_{∞}^{+}.

Lie Spiders

Let $(V,\langle,\rangle$,$) be a vector space with a$ nondegenerate bilinear form.

Modulo Jacobi (IHX) and antisymmetry.

Antisymmetry: $[\mathrm{x}, \mathrm{y}]=-[\mathrm{y}, \mathrm{x}] \Rightarrow\langle$,$\rangle is symplectic.$ Jacobi Identity: \Leftarrow Generalized associativity (cyclic operad structure)

Let V_{n} be a fixed standard 2n-dimensional symplectic vector space.
ℓ_{n}^{+}is the Lie algebra of spiders labeled by V_{n}, with at least 3 legs.

$$
\ell_{\infty}^{+}=\lim _{n \rightarrow \infty} \ell_{n}^{+}
$$

Utility of the abelianization

$$
\begin{aligned}
& \mathfrak{g} \rightarrow \mathfrak{a} \\
& H^{*}(\mathfrak{a}) \rightarrow H^{*}(\mathfrak{g}) \\
& \Lambda^{*}(\mathfrak{a}) \rightarrow H^{*}(\mathfrak{g}) \\
& \Lambda^{*}(\mathfrak{a})^{\mathfrak{s p}} \rightarrow H^{*}(\mathfrak{g})^{\mathfrak{s p}}
\end{aligned}
$$

In some cases, the kernel is not too large.

Morita constructed a surjective Lie algebra map

$$
\begin{aligned}
\ell_{\infty}^{+} \rightarrow & \Lambda^{3} \vee \oplus \bigoplus_{k=1}^{\infty} S^{2 k+1} V \\
& \text { abelian Lie algebra }
\end{aligned}
$$

He conjectured that this is precisely the abelianization.

Not hard: tr vanishes on nontrivial brackets.

Idea: generalize Morita's trace.

$$
\operatorname{Tr}=\exp (t r): \wedge \ell_{\infty}^{+} \rightarrow \mathcal{H G}
$$

$$
\xrightarrow{\operatorname{Tr}} \sum_{M}\left\langle v_{i_{1}}, v_{j_{1}}\right\rangle \cdots\left\langle v_{i_{k}}, v_{j_{k}}\right\rangle
$$

Theorem: $\left(\ell_{\infty}^{+}\right)_{a b} \stackrel{T r_{*}}{\hookrightarrow} H_{1}(\mathcal{H G})$
where $\operatorname{Im}\left(T r_{*}\right)$ contains, for example, hairy graphs labeled by $V^{+} \subset V$.

$H_{1}(\mathcal{H G})$ is graded by loop degree.

$$
\begin{aligned}
& H_{1}^{0}(\mathcal{H G}) \cong \Lambda^{3} V \\
& H_{1}^{1}(\mathcal{H G}) \cong \bigoplus_{k=1}^{\infty} S^{2 k+1} V
\end{aligned}
$$

\}
 Morita

New: $\quad H_{1}^{2}(\mathcal{H} \mathcal{G}) \cong \bigoplus_{k>\ell \geq 0}\left(F_{(k, \ell)}\right)^{\oplus \lambda_{k, \ell}}$

$$
F_{(k, \ell)}=\text { irrep of GL(V) }
$$

s_{n} is the dimension of the space of weight n cuspidal modular forms for $S L(2, \mathbb{Z})$.

$$
\lambda_{k, \ell}= \begin{cases}s_{k-\ell+2} & \text { if } \ell \text { is even. } \\ s_{k-\ell+2}+1 & \text { if } \ell \text { is odd } .\end{cases}
$$

New: $H_{1}^{3}(\mathcal{H G}) \neq 0$

Example:

$$
\neq 0 \in H_{1}^{2}(\mathcal{H G})
$$

$$
v_{i} \in V^{+} \Rightarrow
$$

this is in im(Tr), so represents a nonzero element of $\left(\ell_{\infty}^{+}\right)_{a b}$.

$$
\begin{aligned}
\left\langle v_{3}, v_{4}\right\rangle \neq & \Rightarrow \\
& \text { this is not in im(Tr). }
\end{aligned}
$$

Proof of $H_{1}^{2}(\mathcal{H \mathcal { G }}) \cong \bigoplus_{k>\ell \geq 0}\left(F_{(k, \ell)}\right)^{\oplus \lambda_{k, \ell}}$

Step 1: $H_{1}^{r}(\mathcal{H G}) \cong H^{2 r-3}\left(\operatorname{Out}\left(F_{r}\right) ; \mathcal{P}\left(V^{\oplus r}\right)\right)$

Step 2:
$H^{1}\left(\operatorname{Out}\left(F_{2}\right) ; \mathcal{P}(V \oplus V)\right)=H^{1}(G L(2, \mathbb{Z}) ; \mathcal{P}(V \oplus V))$
Use existing results (Eichler-Shimura).

Proof of Step 1:

Spine of Outer Space

$\otimes \Phi \in \tilde{C}^{2 r-3}\left(\operatorname{Out}\left(F_{r}\right), \mathcal{P}\left(V^{\oplus r}\right)\right)$
$\Phi \in \mathcal{P}\left(V^{\oplus r}\right)=\mathcal{P}\left(V \otimes H^{1}\left(R_{r}, \mathbb{C}\right)\right) \stackrel{\rho^{*}}{=} \mathcal{P}\left(V \otimes H^{1}(G, \mathbb{C})\right)$

$\mathcal{P}\left(V \otimes H^{1}(G, \mathbb{C})\right) \leftrightarrow$ hairy graphs

$\mathcal{P}\left(V \otimes H^{1}(G, \mathbb{C})\right) \leftrightarrow$ hairy graphs

$$
\left(e_{1} \otimes a\right)^{3}\left(e_{3} \otimes b\right)^{2}\left(e_{6} \otimes c\right)^{4}\left(e_{6} \otimes d\right)
$$

Modulo the action of $\operatorname{Out}\left(F_{r}\right)$ we are left with hairy graphs up to graph isomorphism.

One verifies that in this top degree, the hairy graph boundary operator corresponds to the boundary operator for the spine (with local coefficients.)

Step 2: $H^{1}\left(\operatorname{Out}\left(F_{2}\right), \mathcal{P}\left(V \otimes \mathbb{C}^{2}\right)\right)=$?
Detour: modular forms.

$$
H^{1}\left(O u t\left(F_{2}\right), \mathcal{P}\left(V \otimes \mathbb{C}^{2}\right)\right)=?
$$

Detour: modular forms.
$f: \mathbb{H} \rightarrow \mathbb{C}$ meromorphic.

$$
H^{1}\left(O u t\left(F_{2}\right), \mathcal{P}\left(V \otimes \mathbb{C}^{2}\right)\right)=?
$$

Detour: modular forms.

$f: \mathbb{H} \rightarrow \mathbb{C}$ meromorphic.

$$
\alpha z=\frac{a z+b}{c z+d} \quad \alpha \in S L(2, \mathbb{Z})
$$

$$
H^{1}\left(O u t\left(F_{2}\right), \mathcal{P}\left(V \otimes \mathbb{C}^{2}\right)\right)=?
$$

Detour: modular forms.

$f: \mathbb{H} \rightarrow \mathbb{C}$ meromorphic.

$$
\alpha z=\frac{a z+b}{c z+d} \quad \alpha \in S L(2, \mathbb{Z})
$$

Suppose $f(z)=f(\alpha z)(c z+d)^{-k}$

$$
H^{1}\left(O u t\left(F_{2}\right), \mathcal{P}\left(V \otimes \mathbb{C}^{2}\right)\right)=?
$$

Detour: modular forms.

$f: \mathbb{H} \rightarrow \mathbb{C}$ meromorphic.

$$
\alpha z=\frac{a z+b}{c z+d} \quad \alpha \in S L(2, \mathbb{Z})
$$

Suppose $f(z)=f(\alpha z)(c z+d)^{-k}$

$$
q(z)=\left.e^{2 \pi i z}\right|_{\mathbb{C} \backslash} ^{\mathbb{H} \backslash 0\}} \xrightarrow{f} \mathbb{C} \quad \begin{gathered}
\mathrm{f}(\mathrm{z})=\mathrm{f}(\mathrm{z}+1) \text { so this ' } \mathrm{q}- \\
\text { expansion' exists. }
\end{gathered}
$$

f_{∞} meromorphic on $\mathbb{C} \Rightarrow$

f is a modular form of weight k .

$$
f_{\infty}(0)=0 \Rightarrow
$$

f is cuspidal.

Example: Eisenstein Series

$$
G_{k}(z)=\sum_{(m, n) \neq(0,0)} \frac{1}{(m z+n)^{k}} k>2
$$

Theorem: The complex vector space of modular forms is isomorphic to the polynomial ring $\mathbb{C}\left[G_{4}, G_{6}\right]$.

Exercise:

$$
\begin{aligned}
& \operatorname{dim} M_{k}=\left\{\begin{array}{lll}
\left\lfloor\frac{k}{12}\right\rfloor & \text { if } k \equiv 2 & \bmod 12 \\
\left\lfloor\frac{k}{12}\right\rfloor+1 & \text { if } k \not \equiv 2 & \bmod 12
\end{array}\right. \\
& M_{k} \cong M_{k}^{0} \oplus \mathbb{C}
\end{aligned}
$$

Eichler-Shimura isomorphism

Let f be a cusp form of weight k .

Eichler-Shimura isomorphism

Let f be a cusp form of weight k .

$$
E S_{f}: P S L(2, \mathbb{Z}) \rightarrow \mathbb{R}^{k-1}
$$

Eichler-Shimura isomorphism

Let f be a cusp form of weight k .

$$
\begin{gathered}
E S_{f}: \operatorname{PSL}(2, \mathbb{Z}) \rightarrow \mathbb{R}^{k-1} \\
\omega(f)=\left[\begin{array}{c}
f(z) z^{k-2} d z \\
f(z) z^{k-3} d z \\
\vdots \\
f(z) z^{0} d z
\end{array}\right]
\end{gathered}
$$

Eichler-Shimura isomorphism

$$
H^{1}\left(S L(2, \mathbb{Z}) ; H_{k-2}\right) \cong M_{k}^{0} \oplus \overline{M_{k}^{0}} \oplus E_{k}
$$

Let s_{n} be the dimension of the space of weight n cuspidal modular forms for $S L(2, \mathbb{Z})$.

Let $F_{(k, \ell)}$ be the irreducible representation of GL(V) associated to the partition $(k, \ell), k \geq \ell$.

Theorem: $H^{1}\left(\operatorname{Out}\left(F_{2}\right) ; \mathcal{P}\left(V \otimes \mathbb{C}^{2}\right)\right) \cong \bigoplus_{k>\ell \geq 0}\left(F_{(k, \ell)}\right)^{\oplus \lambda_{k, \ell}}$
where $\lambda_{k, \ell}= \begin{cases}s_{k-\ell+2} & \text { if } \ell \text { is even. } \\ s_{k-\ell+2}+1 & \text { if } \ell \text { is odd. }\end{cases}$

Proof:

$\operatorname{Out}\left(F_{2}\right)=G L(2, \mathbb{Z})$

Proof:

$\operatorname{Out}\left(F_{2}\right)=G L(2, \mathbb{Z})$
$\mathcal{P}\left[V \otimes \mathbb{C}^{2}\right] \cong \bigoplus M_{\lambda} \otimes N_{\lambda}$ where λ is a Young diagram irreps for V and $\mathbb{C}^{2} . \quad \lambda=(m, n), m \geq n$

Proof:

$\operatorname{Out}\left(F_{2}\right)=G L(2, \mathbb{Z})$
$\mathcal{P}\left[V \otimes \mathbb{C}^{2}\right] \cong \bigoplus_{\lambda} M_{\lambda} \otimes N_{\lambda}$ where λ is a Young diagram irreps for V and $\mathbb{C}^{2} . \quad \lambda=(m, n), m \geq n$
$N_{\lambda} \cong \mathbb{C}_{\operatorname{det}^{n}} \otimes H_{m-n}$ as $G L(2, \mathbb{Z})$ modules.

Proof:

$\operatorname{Out}\left(F_{2}\right)=G L(2, \mathbb{Z})$
$\mathcal{P}\left[V \otimes \mathbb{C}^{2}\right] \cong \bigoplus_{\lambda} M_{\lambda} \otimes N_{\lambda}$ where λ is a Young diagram irreps for V and $\mathbb{C}^{2} . \quad \lambda=(m, n), m \geq n$
$N_{\lambda} \cong \mathbb{C}_{\operatorname{det}^{n}} \otimes H_{m-n}$ as $G L(2, \mathbb{Z})$ modules.

$$
\mathcal{P}\left[V \otimes \mathbb{C}^{2}\right] \cong \bigoplus_{m \geq n} H_{m-n} \otimes F_{(m, n)}
$$

Proof:

$\operatorname{Out}\left(F_{2}\right)=G L(2, \mathbb{Z})$
$\mathcal{P}\left[V \otimes \mathbb{C}^{2}\right] \cong \bigoplus M_{\lambda} \otimes N_{\lambda}$ where λ is a Young diagram irreps for V and $\mathbb{C}^{2} . \quad \lambda=(m, n), m \geq n$
$N_{\lambda} \cong \mathbb{C}_{\operatorname{det}^{n}} \otimes H_{m-n}$ as $G L(2, \mathbb{Z})$ modules.

$$
\mathcal{P}\left[V \otimes \mathbb{C}^{2}\right] \cong \bigoplus_{m \geq n} H_{m-n} \otimes F_{(m, n)}
$$

$$
H^{1}\left(G L(2, \mathbb{Z}) ; \mathcal{P}\left[V \otimes \mathbb{C}^{2}\right]\right)=\bigoplus_{m \geq n} H^{1}\left(G L(2, \mathbb{Z}) ; H_{m-n}\right) \otimes F_{(m, n)}
$$

$$
\begin{gathered}
H^{1}\left(G L(2, \mathbb{Z}), H_{k}\right) \cong H^{1}\left(S L(2, \mathbb{Z}), H_{k}\right)^{\mathbb{Z}_{2}} \\
H^{1}\left(S L(2, \mathbb{Z}) ; H_{k}\right) \cong M^{0}(k+2) \oplus \overline{M^{0}(k+2)} \oplus E_{k+2}
\end{gathered}
$$

$$
\begin{gathered}
H^{1}\left(G L(2, \mathbb{Z}) ; \mathcal{P}\left[V \otimes \mathbb{C}^{2}\right]\right)=\bigoplus_{m \geq n} H^{1}\left(G L(2, \mathbb{Z}) ; H_{m-n}\right) \otimes F_{(m, n)} \\
H^{1}\left(S L(2, \mathbb{Z}) ; H_{m-n}\right)^{\mathbb{Z}_{2}} \cong \begin{cases}M^{0}(m-n+1) & \text { if } n \text { is even. } \\
M^{0}(m-n+2) \oplus E_{m-n+2} & \text { if } n \text { is odd. }\end{cases}
\end{gathered}
$$

$$
E_{m-n+2} \cong \mathbb{C} \text { unless } m=n \quad E_{2}=0
$$

Fitting pieces of the abelianization together

$$
H_{0}\left(\operatorname{Out}\left(F_{3}\right) ; \mathbb{Q}\right)
$$

$$
\bigoplus_{k=1}^{\infty} s^{2 k+1} v
$$

can combine with themselves to create generalized Morita classes.

$H_{4}\left(\operatorname{Out}\left(F_{4}\right) ; \mathbb{Q}\right)$
(Vogtmann)
$H_{8}\left(\operatorname{Out}\left(F_{6}\right) ; \mathbb{Q}\right)$
(Conant,Vogtmann, Ohashi)

$H_{7}\left(\operatorname{Aut}\left(F_{5}\right) ; \mathbb{Q}\right)$

$H_{11}\left(\operatorname{Aut}\left(F_{7}\right) ; \mathbb{Q}\right)$
(CKV, Gerlits)

$H_{22}\left(\operatorname{Out}\left(F_{13}\right) ; \mathbb{Q}\right)$
nonzero??

Further Directions

- Extend the 2-loop calculation to 3 -loops and beyond. To generalize our argument, we need the cohomology of $\operatorname{SL}(\mathrm{n}, \mathrm{Z})$ with coefficients in an irreducible representation (doable) as well as the cohomology of IA_n as a GL module, which is quite hard.
- Show that classes produced from gluing together graphs in the abelianization give rise, in some large number of case, to nontrivial homology classes. Current methods require computer computations. The next Morita class is probably within reach, but essentially a new method will be needed for the general case.
- All known classes for Aut and Out arise from this abelianization construction. Is this true in general?

