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Notation:
I" = finite, simplicial graph

V =Avi,...,vn} = vertex set

Ar= (VI vivi=v;vi,iff vi ,v; are adjacent in I" )

= right-angled Artin group (RAAG)

dim Ar = size of maximal clique in I’
= rank of maximal abelian subgroup of Ar
dim=1 = Ar = free group

dim =n = Ar =free abelain group




K(Ar,l)-space: Salvetti complex for Ar

St =Rose U (k-torus for each k-clique in I")

Sr 1s a locally CAT(0) cube complex with
fundamental group Ar.

Ar ™ Sr= CAT(0) cube complex, dim Sr=dim Ar




Right-angled Artin groups
® have nice geometry

¢ contain interesting subgroups

¢ interpolate between free groups and free abelian groups

They provide a context to understand the relation between

Out(Fn) Linear groups MCG

Out(Ar
Out(Fy) s GLA(Z)

Sp2e(Z) 2% MCG(S,) M. Day)




Many properties are known to hold for

Out(F,) and GLW(Z)
Which of these properties hold
for all Out(Ar)?

Some results:

e Out(Ar) is virtually torsion-free, finite vcd

e Bounds on vcd
® Out(Ar) is residually finite (proved independently by Minasyan)

e Out(Ar) satisfies the Tits alternative (if I homogeneous)




Some techniques of proof

Definition: Let ® C I' be a full subgraph. Say © 1s

characteristic it every automorphism of Ar preserves

Ae up to conjugacy (and graph symmetry).

Say ® C I is characteristic. Then
Ae “— Ar —> Are = Ar/{Ae)

induces restriction and exclusion homomorphisms:

Out (A@) < Out (Ar) — Out (Are)

Main 1dea: use these to red

questions about some small

uce questions about Out(Ar) to

er Out(Ae) and use induction.




Servatius (’89), Laurence (°95): Out(Ar) has a finite
generating set consisting of:
o Graph symmetries: I' — 1T
¢ Inversions: v — v-!
e Partial conjugations: conjugate a connected
component of I'\st(v) by .
e Transvections: v — vw, providing lk(v) c st(w)

conj by v

Define Out’(Ar) = subgroup generated by inversions,

partial conjugations, transvections




Define a partial ordering on vertices of I’

v<w 1if lk(v) c st(w)
ve~wi1f v<w and w<v

Let [v] =equivalence class of v

st[v] = U st(w)
~V

\%Y%

Ik[v] = st[v] \ [V]

If [v] 1s maximal, then [v] and st[V]
are characteristic!

Proof: check that each of the Servatius-Laurence
generators preserves Ay and Agy) up to conjugacy.




b v

} st|v]

b k)

So if [v] 1s maximal, we have a homomorphism

Prv: Out®(Ar) R, Out®(Asgivy) 13N Out®(Aikpvy)

Key Lemma: If I' 1s connected, then the kernel K of
> K — Out®Ap) = TT Out®(An)

1s a finitely generated free abelian group. (We give
explicit generating set for K.)




Key Lemma: If I' 1s connected, then the kernel K of
] - K — Out%(Ar) — TI Out®(Aikpvy)

1s a finitely generated free abelian group.

Theorem: (C-Crisp-Vogtmann, C-Vogtmann) For all right-
angled Artin groups Ar, Out(Ar) is virtually torsion-free

and has finite virtual cohomological dimension (vcd).

Proof: Induction on dim Ar.

dim Ar = 1 means dim Ar = free group. True by Culler-Vogtmann.
Say dim Ar > 1. Note that dim Aiv) < dim Ar for all [v].

So by induction, Out(Ar) is virtually torsion-free and has finite vcd,
providing 1" is connected.

If T" 1s disconnected, Aris a free product and can use results of
Guirardel-Levitt on Out(free products).




Also get bounds on the vcd.

Theorem: (C-Bux-Vogtmann) If I is a tree, then
ved(Out(Ar)) =e + 21 - 3
where e = # edges and [ = # leaves.

Proof: In this case Aivis free. We 1dentity of the image of
P: Out(Ar) — IT Out(Aip) and compute its ved by finding an
invariant subspace of outer space.

Theorem: (C-Vogtmann) For all Ar, Out(Ar) 1s residually finite.

Proof: Use Key Lemma as before,
] » K — Out’(Ap) 5 T Outo(Anp)

to show that its true for connected I'. Use results of Minasyan-Osin
for free products.




Tits Alternative

A group G satisfies the Tits Alternative if every
subgroup of G 1s either virtually solvable or contains F».

A group G satisfies the Strong Tits Alternative 1f every
subgroup of G 1s either virtually abelian or contains F».

Ar = free group, Out(Ar) satisfies the Strong Tits Alternative

Ar = free abelian, Out(Ar)=Gl(n, Z) satisfies the Tits
Alternative and has non-abelian solvable subgroups.

What about the Tits Alternative for other Out(Ar)?




Try to prove Tits Alternative for Out(Ar)
by induction as above.
Problem: cant get from connected = disconnected I’

Question: If G = Gy *...* Gy and Out(G;) satisfies the Tits
Alternative for all 1, does the same hold for Out(G)?

Definition: I'is homogeneous of dim 1 if I' is discrete.
I"1s homogeneous of dim n if I' 1s connected and 1k(v) 1s
homogeneous of dim n-1 for all v.

Example: The 1-skeleton of any triangulation of a
n-manifold 1s homogeneous of dimesnion n.




Theorem: (C-Vogtmann) Assume I" 1s homogeneous of
dim n. Then
1. Out(Ar) satisfies the Tits Alternative.

2. The derived length of every solvable subgroup is < n.

3. ()\ﬁt(Ar) satisfies the Strong Tits Alternative.

(where Out(Ar) is the subgroup generated by all of the Servatius-
Laurence generators, except adjacent transvections.)

Corollary: If I" 1s a connected graph with no triangles
and no leaves, then Out(Ar) = é\ﬁt(Ar) satisfies the
Strong Tits Alternative.

Proof: (1) and (2) follow from key lemma and induction.
To prove (3), must show virtually solvable = virtually abelian.
Conner, Gersten-Short: true if every co-order element has

positive translation length, t(g) = 11{im L gkll >0.
—00 k




Work 1n Progress

Find an “outer space” for Out(Ar)

Outer space for F,, CV(F,) :

(1) equiv classes of marked metric graphs
Rose — ©

(2) minimal, free actions of F, on a tree

What 1s the analogue for Out(Ar) ?




Example: Ar=F, X Fn ™ tree X tree
so natural choice for outer space would be

CV(Ar) = {minimal, free actions of Ar on tree X tree}

More generally, 1f dim Ar = 2, then for every [v],
Ast[v] = A[V] X Alk[v] = free X free

C-Crisp-Vogtmann: For dim Ar = 2, we construct an
“outer space”

CVi(Ar) =4 (A X Ay 7Y tree X tree),
compatibility data}

Theorem: For dim Ar =2, CVi(Ar) is contractible and
has a proper action of Out(Ar).




However, CVi(Ar) is very big and somewhat awkward.

Back to our example:
Ar=Fy X Fn ™ tree X tree = CAT(0) rectangle complex

so a more natural choice for outer space might be

CV5>(Ar) = {minimal, free actions of Ar on a

CAT(0) rectangle complex}
= {marked, locally CAT(0) rectangle

complexes, Sy — X }

Conjecture: CVa(Ar) (or some nice invariant subspace) is
contractible.




Culler-Morgan: A minimal, semi-simple action

Fn 7 tree 1s uniquely determined (up to equivariant
1sometry) by its length function .

[(g) =1nf {d(x,gx) | x € X}
This gives an embedding

CUF,) < p® = p®™

whose closure C_V(Fn) 1S compact.

Theorem: (C-Margolis) For dim Ar=2, a minimal,
free action of Ar on a 2-dim’l CAT(0) rectangle
complex 1s determined (up to equivariant isometry) by
its length function. Thus,

CVa(Ar) = p® = p A0

Question: Is WZ(AF) compact?



F, “¥ T 1s minimal if T 1s the union of the axis of
elements of Fn. (axis(g)={x | d(x,gx) 1s minimal })

Def: Ar 7 X 1s minimal 1f X 1s the union of the
minsets of rank 2 abelian subgroups.

(If dim X=2, this implies X =U 2-flats )

Proof of Theorem: Show length function determines
¢ distance between any two such flats

e shape of intersection of any two flats




Fn 7 tree: Distance between non-intersecting axes

1 axis(g)
g-1x X o 2

hx

I(he) = I(h) + I(g) + 2r

r

>
y hy axis(h)

Ar ™ X: Distance between non-intersecting flats:

min(G)
\\X\ May not be geodesic, so
I(hg) < I(h) +(g) + 2r

o K \ We show that
Xy\\ 2r = sup {l(hg) — I(h) — [(g)}




