Automorphisms of

Right-Angled Artin Groups

Ruth Charney

Joint work with

Karen Vogtmann

Notation:

$$
\begin{aligned}
\Gamma & =\text { finite, simplicial graph } \\
\mathrm{V} & =\left\{\mathrm{v}_{1}, \ldots, \mathrm{v}_{\mathrm{n}}\right\}=\text { vertex set } \\
\mathrm{A}_{\Gamma} & \left.=\langle\mathrm{V}| \mathrm{v}_{\mathrm{i}} \mathrm{v}_{\mathrm{j}}=\mathrm{v}_{\mathrm{j}} \mathrm{v}_{\mathrm{i}}, \text { iff } \mathrm{v}_{\mathrm{i}}, \mathrm{v}_{\mathrm{j}} \text { are adjacent in } \Gamma\right\rangle \\
& =\text { right-angled Artin group (RAAG) }
\end{aligned}
$$

$\operatorname{dim} \mathrm{A}_{\Gamma}=$ size of maximal clique in Γ
$=$ rank of maximal abelian subgroup of A_{Γ}
$\operatorname{dim}=1 \Rightarrow A_{\Gamma}=$ free group
$\operatorname{dim}=\mathrm{n} \Rightarrow \mathrm{A}_{\Gamma}=$ free abelain group
$\mathrm{K}\left(\mathrm{A}_{\Gamma}, 1\right)$-space: Salvetti complex for A_{Γ}
$\mathrm{S}_{\Gamma}=\operatorname{Rose} \cup(\mathrm{k}$-torus for each k-clique in $\Gamma)$

S_{Γ} is a locally $\operatorname{CAT}(0)$ cube complex with fundamental group A_{Γ}.
$\mathrm{A}_{\Gamma} \curvearrowright \widetilde{\mathrm{S}}_{\Gamma}=\operatorname{CAT}(0)$ cube complex, $\operatorname{dim} \widetilde{\mathrm{S}}_{\Gamma}=\operatorname{dim} \mathrm{A}_{\Gamma}$

Right-angled Artin groups

- have nice geometry
- contain interesting subgroups
- interpolate between free groups and free abelian groups

They provide a context to understand the relation between

$$
\begin{aligned}
& \operatorname{Out}\left(\mathrm{F}_{\mathrm{n}}\right) \quad \text { Linear groups } \quad \mathrm{MCG} \\
& \operatorname{Out}\left(\mathrm{~F}_{\mathrm{n}}\right) \stackrel{\operatorname{Out}\left(\mathrm{A}_{\mathrm{r}}\right)}{\longleftrightarrow} \mathrm{GL}_{\mathrm{n}}(\mathrm{Z}) \\
& \\
& \operatorname{Sp}_{2 \mathrm{~g}}(\mathrm{Z}) \xrightarrow{\text { Out }\left(\mathrm{Ar}_{\mathrm{r}, \omega)}\right)} \operatorname{MCG}\left(\mathrm{S}_{\mathrm{g}}\right) \quad \text { (M. Day) }
\end{aligned}
$$

Many properties are known to hold for

$\operatorname{Out}\left(\mathrm{F}_{\mathrm{n}}\right)$ and $\mathrm{GL}_{\mathrm{n}}(\mathrm{Z})$
 Which of these properties hold for all $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$?

Some results:

- $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ is virtually torsion-free, finite vcd
- Bounds on vcd
- $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ is residually finite (proved independently by Minasyan)
- $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ satisfies the Tits alternative (if Γ homogeneous)

Some techniques of proof

Definition: Let $\Theta \subset \Gamma$ be a full subgraph. Say Θ is characteristic if every automorphism of A_{Γ} preserves A_{Θ} up to conjugacy (and graph symmetry).

Say $\Theta \subset \Gamma$ is characteristic. Then

$$
\mathrm{A}_{\Theta} \hookrightarrow \mathrm{A}_{\Gamma} \rightarrow \mathrm{A}_{\Gamma \Theta} \cong \mathrm{A}_{\Gamma} /\left\langle\mathrm{A}_{\Theta}\right\rangle
$$

induces restriction and exclusion homomorphisms:
$\operatorname{Out}\left(\mathrm{A}_{\Theta}\right) \stackrel{\mathrm{R}_{\Theta}}{\leftarrow} \operatorname{Out}\left(\mathrm{A}_{\Gamma}\right) \xrightarrow{\mathrm{E}_{\Theta}} \operatorname{Out}\left(\mathrm{A}_{\Gamma \Theta}\right)$

Main idea: use these to reduce questions about $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ to questions about some smaller $\operatorname{Out}\left(\mathrm{A}_{\Theta}\right)$ and use induction.

How can we find characteristic subgraphs?

Servatius ('89), Laurence ('95): Out(A_{Γ}) has a finite generating set consisting of:

- Graph symmetries: $\Gamma \rightarrow \Gamma$
- Inversions: $\mathrm{v} \rightarrow \mathrm{v}^{-1}$
- Partial conjugations: conjugate a connected component of $\Gamma \backslash \mathrm{st}(\mathrm{v})$ by v .
- Transvections: $\mathrm{v} \rightarrow \mathrm{vw}$, providing $\mathrm{lk}(\mathrm{v}) \subset \operatorname{st}(\mathrm{w})$

Define $\operatorname{Out}^{0}\left(\mathrm{~A}_{\Gamma}\right)=$ subgroup generated by inversions, partial conjugations, transvections

Define a partial ordering on vertices of Γ

$$
\begin{aligned}
& v \leq w \text { if } 1 k(v) \subset \operatorname{st}(w) \\
& v \sim w \text { if } v \leq w \text { and } w \leq v
\end{aligned}
$$

Let $[\mathrm{v}]=$ equivalence class of v

$$
\begin{aligned}
& \mathrm{st}[\mathrm{v}]=\underset{\mathrm{w} \sim \mathrm{v}}{\mathrm{U}} \mathrm{st}(\mathrm{w}) \\
& \mathrm{lk}[\mathrm{v}]=\operatorname{st}[\mathrm{v}] \backslash[\mathrm{v}]
\end{aligned}
$$

If $[\mathrm{v}]$ is maximal, then $[\mathrm{v}]$ and st[v$]$ are characteristic!

Proof: check that each of the Servatius-Laurence generators preserves $\mathrm{A}_{[\mathrm{v}]}$ and $\mathrm{A}_{\text {st[v] }}$ up to conjugacy.

So if [v] is maximal, we have a homomorphism

$$
\mathrm{P}_{[\mathrm{v}]}: \operatorname{Out}^{0}\left(\mathrm{~A}_{\Gamma}\right) \xrightarrow{\mathrm{R}} \operatorname{Out}^{0}\left(\mathrm{~A}_{\mathrm{st}[\mathrm{v}]}\right) \xrightarrow{\mathrm{E}} \operatorname{Out}^{0}\left(\mathrm{~A}_{\mathrm{lk}[\mathrm{v}]}\right)
$$

Key Lemma: If Γ is connected, then the kernel K of

$$
1 \rightarrow \mathrm{~K} \rightarrow \operatorname{Out}^{0}\left(\mathrm{~A}_{\Gamma}\right) \xrightarrow{\mathrm{p}} \Pi \operatorname{Out}^{0}\left(\mathrm{~A}_{\mathrm{lk}[\mathrm{lv}}\right)
$$

is a finitely generated free abelian group. (We give explicit generating set for K.)

Key Lemma: If Γ is connected, then the kernel K of

$$
1 \rightarrow \mathrm{~K} \rightarrow \operatorname{Out}^{0}\left(\mathrm{~A}_{\Gamma}\right) \rightarrow \Pi_{\operatorname{Out}^{0}}\left(\mathrm{~A}_{\mathrm{kk}[\mathrm{v}}\right)
$$

is a finitely generated free abelian group.

Theorem: (C-Crisp-Vogtmann, C-Vogtmann) For all rightangled Artin groups $\mathrm{A}_{\Gamma}, \operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ is virtually torsion-free and has finite virtual cohomological dimension (vcd).

Proof: Induction on $\operatorname{dim} \mathrm{A}_{\Gamma}$. $\operatorname{dim} \mathrm{A}_{\Gamma}=1$ means $\operatorname{dim} \mathrm{A}_{\Gamma}=$ free group. True by Culler-Vogtmann. Say $\operatorname{dim} A_{\Gamma}>1$. Note that $\operatorname{dim} \mathrm{A}_{\mathrm{lk}[\mathrm{v}]}<\operatorname{dim} \mathrm{A}_{\Gamma}$ for all $[\mathrm{v}]$. So by induction, $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ is virtually torsion-free and has finite vcd, providing Γ is connected.
If Γ is disconnected, A_{Γ} is a free product and can use results of Guirardel-Levitt on Out(free products).

Also get bounds on the vcd.
Theorem: (C-Bux-Vogtmann) If Γ is a tree, then

$$
\operatorname{vcd}\left(\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)\right)=e+2 l-3
$$

where $e=$ \# edges and $l=$ \# leaves.
Proof: In this case $\mathrm{A}_{\mathrm{Ik}[\mathrm{y}]}$ is free. We identify of the image of P: $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right) \rightarrow \Pi \operatorname{Out}\left(\mathrm{A}_{\mathrm{Ik}[\mathrm{y}]}\right)$ and compute its vcd by finding an invariant subspace of outer space.

Theorem: (C-Vogtmann) For all $\mathrm{A}_{\Gamma}, \operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ is residually finite.
Proof: Use Key Lemma as before,

$$
1 \rightarrow \mathrm{~K} \rightarrow \operatorname{Out}^{0}\left(\mathrm{~A}_{\Gamma}\right) \xrightarrow{\mathrm{P}} \operatorname{OOt}^{0}\left(\mathrm{~A}_{\mathrm{Ik}[\mathrm{lv}}\right)
$$

to show that its true for connected Γ. Use results of Minasyan-Osin for free products.

Tits Alternative

A group G satisfies the Tits Alternative if every subgroup of G is either virtually solvable or contains F_{2}.

A group G satisfies the Strong Tits Alternative if every subgroup of G is either virtually abelian or contains F_{2}.
$\mathrm{A}_{\Gamma}=$ free group, $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$ satisfies the Strong Tits Alternative
$A_{\Gamma}=$ free abelian, $\operatorname{Out}\left(A_{\Gamma}\right)=\mathrm{Gl}(\mathrm{n}, \mathrm{Z})$ satisfies the Tits Alternative and has non-abelian solvable subgroups.

What about the Tits Alternative for other $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$?

Try to prove Tits Alternative for $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$

 by induction as above.Problem: cant get from connected \Rightarrow disconnected Γ

Question: If $\mathrm{G}=\mathrm{G}_{1} * \ldots * \mathrm{G}_{\mathrm{k}}$ and $\operatorname{Out}\left(\mathrm{G}_{\mathrm{i}}\right)$ satisfies the Tits Alternative for all i, does the same hold for $\operatorname{Out}(\mathrm{G})$?

Definition: Γ is homogeneous of $\operatorname{dim} 1$ if Γ is discrete. Γ is homogeneous of $\operatorname{dim} n$ if Γ is connected and $\operatorname{lk}(\mathrm{v})$ is homogeneous of $\operatorname{dim} \mathrm{n}-1$ for all v .

Example: The 1 -skeleton of any triangulation of a n -manifold is homogeneous of dimesnion n .

Theorem: (C-Vogtmann) Assume Γ is homogeneous of $\operatorname{dim} n$. Then

1. Out $\left(\mathrm{A}_{\Gamma}\right)$ satisfies the Tits Alternative.
2. The derived length of every solvable subgroup is $\leq \mathrm{n}$.
3. $\widetilde{\operatorname{Out}}\left(\mathrm{A}_{\Gamma}\right)$ satisfies the Strong Tits Alternative.
(where $\widetilde{\mathrm{Out}}\left(\mathrm{A}_{\Gamma}\right)$ is the subgroup generated by all of the ServatiusLaurence generators, except adjacent transvections.)

Corollary: If Γ is a connected graph with no triangles and no leaves, then $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)=\widetilde{\operatorname{Out}}\left(\mathrm{A}_{\Gamma}\right)$ satisfies the Strong Tits Alternative.

Proof: (1) and (2) follow from key lemma and induction. To prove (3), must show virtually solvable \Rightarrow virtually abelian.
Conner, Gersten-Short: true if every ∞-order element has positive translation length, $\tau(\mathrm{g})=\lim _{\mathrm{k} \rightarrow \infty} \frac{\left\|\mathrm{g}^{\mathrm{k}}\right\|}{\mathrm{k}}>0$.

Work in Progress

Find an "outer space" for $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$

Outer space for $\mathrm{F}_{\mathrm{n}}, \mathrm{CV}\left(\mathrm{F}_{\mathrm{n}}\right)$:
(1) equiv classes of marked metric graphs

$$
\text { Rose } \stackrel{\simeq}{\rightarrow} \Theta
$$

(2) minimal, free actions of F_{n} on a tree

What is the analogue for $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$?

Example: $\mathrm{A}_{\Gamma}=\mathrm{F}_{\mathrm{n}} \times \mathrm{F}_{\mathrm{m}} \curvearrowright$ tree \times tree so natural choice for outer space would be

$$
C V\left(\mathrm{~A}_{\Gamma}\right)=\left\{\text { minimal }, \text { free actions of } \mathrm{A}_{\Gamma} \text { on tree } \times \text { tree }\right\}
$$

More generally, if $\operatorname{dim} \mathrm{A}_{\Gamma}=2$, then for every [v],

$$
\mathrm{A}_{\mathrm{st}[\mathrm{v}]}=\mathrm{A}_{[\mathrm{v}]} \times \mathrm{A}_{\mathrm{lk}[\mathrm{v}]}=\text { free } \times \text { free }
$$

C-Crisp-Vogtmann: For $\operatorname{dim} \mathrm{A}_{\Gamma}=2$, we construct an
"outer space"

$$
\begin{aligned}
C V_{1}\left(\mathrm{~A}_{\Gamma}\right)=\left\{\left(\mathrm{A}_{[\mathrm{v}]} \times \mathrm{A}_{[\mathrm{k}[\mathrm{v}]}\right.\right. & \curvearrowright \text { tree } \times \text { tree }) \\
& \text { compatibility data }\}
\end{aligned}
$$

Theorem: For $\operatorname{dim} \mathrm{A}_{\Gamma}=2, C V_{1}\left(\mathrm{~A}_{\Gamma}\right)$ is contractible and has a proper action of $\operatorname{Out}\left(\mathrm{A}_{\Gamma}\right)$.

However, $C V_{1}\left(\mathrm{~A}_{\Gamma}\right)$ is very big and somewhat awkward.

Back to our example:
$\mathrm{A}_{\Gamma}=\mathrm{F}_{\mathrm{n}} \times \mathrm{F}_{\mathrm{m}} \curvearrowright$ tree \times tree $=\mathrm{CAT}(0)$ rectangle complex so a more natural choice for outer space might be

$$
C V_{2}\left(\mathrm{~A}_{\Gamma}\right)=\left\{\text { minimal, free actions of } \mathrm{A}_{\Gamma}\right. \text { on a }
$$

CAT(0) rectangle complex\}
$=\{$ marked, locally $\mathrm{CAT}(0)$ rectangle
complexes, $\mathrm{S}_{\Gamma} \xrightarrow{\approx} \mathrm{X}$ \}
Conjecture: $\mathrm{CV}_{2}\left(\mathrm{~A}_{\Gamma}\right)$ (or some nice invariant subspace) is contractible.

Culler-Morgan: A minimal, semi-simple action
$\mathrm{F}_{\mathrm{n}} \curvearrowright$ tree is uniquely determined (up to equivariant isometry) by its length function .

$$
l(\mathrm{~g})=\inf \{\mathrm{d}(\mathrm{x}, \mathrm{gx}) \mid \mathrm{x} \in \mathrm{X}\}
$$

This gives an embedding

$$
C V\left(\mathrm{~F}_{\mathrm{n}}\right) \hookrightarrow \mathrm{P}^{\infty}=\mathrm{P}^{\mathrm{C}\left(\mathrm{~F}_{\mathrm{n}}\right)}
$$

whose closure $\overline{C V}\left(\mathrm{~F}_{\mathrm{n}}\right)$ is compact.
Theorem: (C-Margolis) For $\operatorname{dim} \mathrm{A}_{\Gamma}=2$, a minimal, free action of A_{Γ} on a 2 -dim'l $\mathrm{CAT}(0)$ rectangle complex is determined (up to equivariant isometry) by its length function. Thus,

$$
C V_{2}\left(\mathrm{~A}_{\Gamma}\right) \hookrightarrow \mathrm{P}^{\infty}=\mathrm{P}^{\mathrm{C}\left(\mathrm{~A}_{\Gamma}\right)}
$$

Question: Is $\overline{C V}_{2}\left(\mathrm{~A}_{\Gamma}\right)$ compact?
$\mathrm{F}_{\mathrm{n}} \curvearrowright \mathrm{T}$ is minimal if T is the union of the axis of elements of $\mathrm{F}_{\mathrm{n}} .(\operatorname{axis}(\mathrm{g})=\{\mathrm{x} \mid \mathrm{d}(\mathrm{x}, \mathrm{gx})$ is minimal $\})$

Def: $\mathrm{A}_{\Gamma} \curvearrowright \mathrm{X}$ is minimal if X is the union of the minsets of rank 2 abelian subgroups.
(If $\operatorname{dim} X=2$, this implies $X=\cup 2$-flats)

Proof of Theorem: Show length function determines

- distance between any two such flats
- shape of intersection of any two flats
$\mathrm{F}_{\mathrm{n}} \curvearrowright$ tree: Distance between non-intersecting axes

$\mathrm{A}_{\Gamma} \curvearrowright \mathrm{X}$: Distance between non-intersecting flats:

May not be geodesic, so $l(\mathrm{hg}) \leq l(\mathrm{~h})+l(\mathrm{~g})+2 \mathrm{r}$

We show that

$$
2 \mathrm{r}=\sup \{l(\mathrm{hg})-l(\mathrm{~h})-l(\mathrm{~g})\}
$$

