Automorphisms of Right-Angled Artin Groups Ruth Charney

Joint work with Karen Vogtmann

Notation:

$$\begin{split} &\Gamma = \text{finite, simplicial graph} \\ &V = \{v_1, \ldots, v_n\} = \text{vertex set} \\ &A_{\Gamma} = \langle V \mid v_i v_j = v_j v_i, \text{iff } v_i \, , v_j \text{ are adjacent in } \Gamma \rangle \\ &= \text{right-angled Artin group (RAAG)} \end{split}$$

dim A_{Γ} = size of maximal clique in Γ = rank of maximal abelian subgroup of A_{Γ} dim = 1 \Rightarrow A_{Γ} = free group dim = n \Rightarrow A_{Γ} = free abelain group K(A $_{\Gamma}$,1)-space: Salvetti complex for A $_{\Gamma}$

 $S_{\Gamma} = \text{Rose } \cup (\text{k-torus for each k-clique in } \Gamma)$

 S_{Γ} is a locally CAT(0) cube complex with fundamental group A_{Γ} .

 $A_{\Gamma} \curvearrowright \widetilde{S}_{\Gamma} = CAT(0)$ cube complex, dim $\widetilde{S}_{\Gamma} = dim A_{\Gamma}$

Right-angled Artin groups

- have nice geometry
- contain interesting subgroups
- interpolate between free groups and free abelian groups

They provide a context to understand the relation between

Out(F_n) Linear groups MCG

$$Out(F_n) \xleftarrow{Out(A_{\Gamma})} GL_n(Z)$$

$$Sp_{2g}(Z) \xleftarrow{Out(A_{\Gamma},\omega)} MCG(S_g) \quad (M. Day)$$

Many properties are known to hold for $Out(F_n)$ and $GL_n(Z)$ Which of these properties hold for *all* $Out(A_{\Gamma})$?

Some results:

- $Out(A_{\Gamma})$ is virtually torsion-free, finite vcd
- Bounds on vcd
- $Out(A_{\Gamma})$ is residually finite (proved independently by Minasyan)
- $Out(A_{\Gamma})$ satisfies the Tits alternative (if Γ homogeneous)

Some techniques of proof

Definition: Let $\Theta \subset \Gamma$ be a full subgraph. Say Θ is *characteristic* if every automorphism of A_{Γ} preserves A_{Θ} up to conjugacy (and graph symmetry).

Say $\Theta \subset \Gamma$ is characteristic. Then

$$A_{\Theta} \xrightarrow{} A_{\Gamma} \xrightarrow{} A_{\Gamma \setminus \Theta} \cong A_{\Gamma} / \langle\!\langle A_{\Theta} \rangle\!\rangle$$

induces restriction and exclusion homomorphisms:

$$Out (A_{\Theta}) \stackrel{R_{\Theta}}{\leftarrow} Out (A_{\Gamma}) \stackrel{E_{\Theta}}{\rightarrow} Out (A_{\Gamma \setminus \Theta})$$

Main idea: use these to reduce questions about $Out(A_{\Gamma})$ to questions about some smaller $Out(A_{\Theta})$ and use induction.

How can we find characteristic subgraphs?

Servatius ('89), Laurence ('95): $Out(A_{\Gamma})$ has a finite generating set consisting of:

- Graph symmetries: $\Gamma \rightarrow \Gamma$
- Inversions: $v \rightarrow v^{-1}$
- Partial conjugations: conjugate a connected component of Γ by v.
- Transvections: $v \rightarrow vw$, providing $lk(v) \subset st(w)$

Define $Out^0(A_{\Gamma})$ = subgroup generated by inversions, partial conjugations, transvections

Define a partial ordering on vertices of Γ

$$v \le w$$
 if $lk(v) \subset st(w)$
 $v \sim w$ if $v \le w$ and $w \le v$

Let [v] = equivalence class of v $st[v] = \bigcup_{w \sim v} st(w)$ $lk[v] = st[v] \setminus [v]$

If [v] is maximal, then [v] and st[v] are characteristic!

Proof: check that each of the Servatius-Laurence generators preserves $A_{[v]}$ and $A_{st[v]}$ up to conjugacy.

So if [v] is maximal, we have a homomorphism

 $P_{[v]}: Out^{0}(A_{\Gamma}) \xrightarrow{R} Out^{0}(A_{st[v]}) \xrightarrow{E} Out^{0}(A_{lk[v]})$

Key Lemma: If Γ is connected, then the kernel K of $1 \rightarrow K \rightarrow Out^0(A_{\Gamma}) \xrightarrow{p} \Pi Out^0(A_{lk[v]})$

is a finitely generated free abelian group. (We give explicit generating set for K.)

Key Lemma: If Γ is connected, then the kernel K of $1 \rightarrow K \rightarrow Out^0(A_{\Gamma}) \rightarrow \Pi Out^0(A_{lk[v]})$ is a finitely generated free abelian group.

Theorem: (C-Crisp-Vogtmann, C-Vogtmann) For all rightangled Artin groups A_{Γ} , $Out(A_{\Gamma})$ is virtually torsion-free and has finite virtual cohomological dimension (vcd).

Proof: Induction on dim A_{Γ} .

dim $A_{\Gamma} = 1$ means dim $A_{\Gamma} =$ free group. True by Culler-Vogtmann. Say dim $A_{\Gamma} > 1$. Note that dim $A_{lk[v]} < \dim A_{\Gamma}$ for all [v]. So by induction, $Out(A_{\Gamma})$ is virtually torsion-free and has finite vcd, *providing* Γ *is connected*. If Γ is disconnected, A_{Γ} is a free product and can use results of

Guirardel-Levitt on Out(free products).

Also get bounds on the vcd.

Theorem: (C-Bux-Vogtmann) If Γ is a tree, then $vcd(Out(A_{\Gamma})) = e + 2l - 3$ where e = # edges and l = # leaves.

Proof: In this case $A_{lk[v]}$ is free. We identify of the image of P: $Out(A_{\Gamma}) \rightarrow \Pi Out(A_{lk[v]})$ and compute its vcd by finding an invariant subspace of outer space.

Theorem: (C-Vogtmann) For all A_{Γ} , $Out(A_{\Gamma})$ is residually finite.

Proof: Use Key Lemma as before,

 $1 \rightarrow K \rightarrow Out^{0}(A_{\Gamma}) \xrightarrow{P} \Pi Out^{0}(A_{lk[v]})$

to show that its true for connected Γ . Use results of Minasyan-Osin for free products.

Tits Alternative

A group G satisfies the Tits Alternative if every subgroup of G is either virtually solvable or contains F₂.

A group G satisfies the Strong Tits Alternative if every subgroup of G is either virtually abelian or contains F₂.

 A_{Γ} = free group, $Out(A_{\Gamma})$ satisfies the Strong Tits Alternative A_{Γ} = free abelian, $Out(A_{\Gamma})$ =Gl(n, Z) satisfies the Tits Alternative and has non-abelian solvable subgroups.

What about the Tits Alternative for other $Out(A_{\Gamma})$?

Try to prove Tits Alternative for $Out(A_{\Gamma})$ by induction as above. Problem: cant get from connected \Rightarrow disconnected Γ

Question: If $G = G_1 * ... * G_k$ and $Out(G_i)$ satisfies the Tits Alternative for all i, does the same hold for Out(G)?

Definition: Γ is homogeneous of dim 1 if Γ is discrete. Γ is homogeneous of dim n if Γ is connected and lk(v) is homogeneous of dim n-1 for all v.

Example: The 1-skeleton of any triangulation of a n-manifold is homogeneous of dimesnion n.

Theorem: (C-Vogtmann) Assume Γ is homogeneous of dim n. Then

- 1. $Out(A_{\Gamma})$ satisfies the Tits Alternative.
- 2. The derived length of every solvable subgroup is $\leq n$.
- 3. $\widetilde{Out}(A_{\Gamma})$ satisfies the Strong Tits Alternative.
- (where $\widetilde{Out}(A_{\Gamma})$ is the subgroup generated by all of the Servatius-Laurence generators, *except* adjacent transvections.)

Corollary: If Γ is a connected graph with no triangles and no leaves, then $Out(A_{\Gamma}) = Out(A_{\Gamma})$ satisfies the Strong Tits Alternative.

Proof: (1) and (2) follow from key lemma and induction. To prove (3), must show virtually solvable \Rightarrow virtually abelian. Conner, Gersten-Short: true if every ∞ -order element has positive translation length, $\tau(g) = \lim_{k \to \infty} \frac{\|g^k\|}{k} > 0$.

Work in Progress

Find an "outer space" for $Out(A_{\Gamma})$

Outer space for F_n , $CV(F_n)$:

(1) equiv classes of marked metric graphs Rose $\xrightarrow{\sim} \Theta$

(2) minimal, free actions of F_n on a tree

What is the analogue for $Out(A_{\Gamma})$?

Example: $A_{\Gamma} = F_n \times F_m \frown$ tree × tree so natural choice for outer space would be $CV(A_{\Gamma}) = \{\text{minimal, free actions of } A_{\Gamma} \text{ on tree } \times \text{ tree} \}$

More generally, if dim $A_{\Gamma} = 2$, then for every [v], $A_{st[v]} = A_{[v]} \times A_{lk[v]} = \text{free} \times \text{free}$

C-Crisp-Vogtmann: For dim $A_{\Gamma} = 2$, we construct an "outer space"

 $CV_{1}(A_{\Gamma}) = \{ (A_{[v]} \times A_{lk[v]} \frown \text{ tree} \times \text{tree}), \\ \text{compatibility data} \}$

Theorem: For dim $A_{\Gamma} = 2$, $CV_1(A_{\Gamma})$ is contractible and has a proper action of $Out(A_{\Gamma})$.

However, $CV_1(A_{\Gamma})$ is very big and somewhat awkward.

Back to our example:

 $A_{\Gamma} = F_n \times F_m$ \frown tree \times tree = CAT(0) rectangle complex

so a more natural choice for outer space might be

 $CV_2(A_{\Gamma}) = \{ \text{minimal, free actions of } A_{\Gamma} \text{ on a} \\ CAT(0) \text{ rectangle complex} \} \\ = \{ \text{marked, locally CAT}(0) \text{ rectangle} \}$

complexes, $S_{\Gamma} \xrightarrow{\sim} X$ }

Conjecture: $CV_2(A_{\Gamma})$ (or some nice invariant subspace) is contractible.

Culler-Morgan: A minimal, semi-simple action

 $F_n \curvearrowright$ tree is uniquely determined (up to equivariant isometry) by its length function .

 $l(g) = \inf \{ d(x,gx) \mid x \in X \}$

This gives an embedding

$$C\mathcal{V}(F_n) \hookrightarrow \mathbb{P}^{\infty} = \mathbb{P}^{C(F_n)}$$

whose closure $\overline{CV}(F_n)$ is compact.

Theorem: (C-Margolis) For dim $A_{\Gamma}=2$, a minimal, free action of A_{Γ} on a 2-dim'l CAT(0) rectangle complex is determined (up to equivariant isometry) by its length function. Thus,

$$C\mathcal{V}_2(A_{\Gamma}) \hookrightarrow \mathbb{P}^{\infty} = \mathbb{P}^{C(A_{\Gamma})}$$

Question: Is $\overline{CV}_2(A_{\Gamma})$ compact?

 $F_n \cap T$ is minimal if T is the union of the axis of elements of $F_{n.}$ (axis(g)={x | d(x,gx) is minimal})

Def: $A_{\Gamma} \cap X$ is minimal if X is the union of the minsets of rank 2 abelian subgroups.

(If dim X=2, this implies $X = \bigcup 2$ -flats)

Proof of Theorem: Show length function determines

- distance between any two such flats
- shape of intersection of any two flats

 $A_{\Gamma} \cap X$: Distance between non-intersecting flats:

May not be geodesic, so $l(hg) \le l(h) + l(g) + 2r$

We show that $2r = \sup \{l(hg) - l(h) - l(g)\}$