Previous: ssteqr Up: ../lapack-s.html Next: sstev
NAME SSTERF - compute all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm SYNOPSIS SUBROUTINE SSTERF( N, D, E, INFO ) INTEGER INFO, N REAL D( * ), E( * ) PURPOSE SSTERF computes all eigenvalues of a symmetric tridiagonal matrix using the Pal-Walker-Kahan variant of the QL or QR algorithm. ARGUMENTS N (input) INTEGER The order of the matrix. N >= 0. D (input/output) REAL array, dimension (N) On entry, the n diagonal elements of the tridiagonal matrix. On exit, if INFO = 0, the eigenvalues in ascending order. E (input/output) REAL array, dimension (N-1) On entry, the (n-1) subdiagonal elements of the tri- diagonal matrix. On exit, E has been destroyed. INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: the algorithm failed to find all of the eigen- values in a total of 30*N iterations; if INFO = i, then i elements of E have not converged to zero.