Previous: dlantr Up: ../lapack-d.html Next: dlapll


dlanv2


 NAME
      DLANV2 - compute the Schur factorization of a real 2-by-2
      nonsymmetric matrix in standard form

 SYNOPSIS
      SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS,
                         SN )

          DOUBLE         PRECISION A, B, C, CS, D, RT1I, RT1R,
                         RT2I, RT2R, SN

 PURPOSE
      DLANV2 computes the Schur factorization of a real 2-by-2
      nonsymmetric matrix in standard form:

           [ A  B ] = [ CS -SN ] [ AA  BB ] [ CS  SN ]
           [ C  D ]   [ SN  CS ] [ CC  DD ] [-SN  CS ]

      where either
      1) CC = 0 so that AA and DD are real eigenvalues of the
      matrix, or 2) AA = DD and BB*CC < 0, so that AA + or -
      sqrt(BB*CC) are complex conjugate eigenvalues.

 ARGUMENTS
      A       (input/output) DOUBLE PRECISION
              B       (input/output) DOUBLE PRECISION C
              (input/output) DOUBLE PRECISION D
              (input/output) DOUBLE PRECISION On entry, the ele-
              ments of the input matrix.  On exit, they are
              overwritten by the elements of the standardized
              Schur form.

      RT1R    (output) DOUBLE PRECISION
              RT1I    (output) DOUBLE PRECISION RT2R    (output)
              DOUBLE PRECISION RT2I    (output) DOUBLE PRECISION
              The real and imaginary parts of the eigenvalues. If
              the eigenvalues are both real, abs(RT1R) >=
              abs(RT2R); if the eigenvalues are a complex conju-
              gate pair, RT1I > 0.

      CS      (output) DOUBLE PRECISION
              SN      (output) DOUBLE PRECISION Parameters of the
              rotation matrix.