Previous: dlantr Up: ../lapack-d.html Next: dlapll
NAME DLANV2 - compute the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form SYNOPSIS SUBROUTINE DLANV2( A, B, C, D, RT1R, RT1I, RT2R, RT2I, CS, SN ) DOUBLE PRECISION A, B, C, CS, D, RT1I, RT1R, RT2I, RT2R, SN PURPOSE DLANV2 computes the Schur factorization of a real 2-by-2 nonsymmetric matrix in standard form: [ A B ] = [ CS -SN ] [ AA BB ] [ CS SN ] [ C D ] [ SN CS ] [ CC DD ] [-SN CS ] where either 1) CC = 0 so that AA and DD are real eigenvalues of the matrix, or 2) AA = DD and BB*CC < 0, so that AA + or - sqrt(BB*CC) are complex conjugate eigenvalues. ARGUMENTS A (input/output) DOUBLE PRECISION B (input/output) DOUBLE PRECISION C (input/output) DOUBLE PRECISION D (input/output) DOUBLE PRECISION On entry, the ele- ments of the input matrix. On exit, they are overwritten by the elements of the standardized Schur form. RT1R (output) DOUBLE PRECISION RT1I (output) DOUBLE PRECISION RT2R (output) DOUBLE PRECISION RT2I (output) DOUBLE PRECISION The real and imaginary parts of the eigenvalues. If the eigenvalues are both real, abs(RT1R) >= abs(RT2R); if the eigenvalues are a complex conju- gate pair, RT1I > 0. CS (output) DOUBLE PRECISION SN (output) DOUBLE PRECISION Parameters of the rotation matrix.