Previous: dggrqf Up: ../lapack-d.html Next: dggsvp


dggsvd


 NAME
      DGGSVD - compute the generalized singular value decomposi-
      tion (GSVD) of the M-by-N matrix A and P-by-N matrix B

 SYNOPSIS
      SUBROUTINE DGGSVD( JOBU, JOBV, JOBQ, M, N, P, K, L, A, LDA,
                         B, LDB, ALPHA, BETA, U, LDU, V, LDV, Q,
                         LDQ, WORK, IWORK, INFO )

          CHARACTER      JOBQ, JOBU, JOBV

          INTEGER        INFO, K, L, LDA, LDB, LDQ, LDU, LDV, M,
                         N, P

          INTEGER        IWORK( * )

          DOUBLE         PRECISION A( LDA, * ), ALPHA( * ), B(
                         LDB, * ), BETA( * ), Q( LDQ, * ), U( LDU,
                         * ), V( LDV, * ), WORK( * )

 PURPOSE
      DGGSVD computes the generalized singular value decomposition
      (GSVD) of the M-by-N matrix A and P-by-N matrix B:

          U'*A*Q = D1*( 0 R ),    V'*B*Q = D2*( 0 R )
      (1)

      where U, V and Q are orthogonal matrices, and Z' is the
      transpose of Z.  Let K+L = the numerical effective rank of
      the matrix (A',B')', then R is a K+L-by-K+L nonsingular
      upper tridiagonal matrix, D1 and D2 are "diagonal" matrices,
      and of the following structures, respectively:

      If M-K-L >= 0,

         U'*A*Q = D1*( 0 R )

                = K     ( I  0 ) * (  0   R11  R12 ) K
                  L     ( 0  C )   (  0    0   R22 ) L
                  M-K-L ( 0  0 )    N-K-L  K    L
                          K  L

         V'*B*Q = D2*( 0 R )

                = L     ( 0  S ) * (  0   R11  R12 ) K
                  P-L   ( 0  0 )   (  0    0   R22 ) L
                          K  L      N-K-L  K    L
      where

        C = diag( ALPHA(K+1), ... , ALPHA(K+L) ),
        S = diag( BETA(K+1),  ... , BETA(K+L) ), C**2 + S**2 = I.
        The nonsingular triangular matrix R = ( R11 R12 ) is

      stored
                                              (  0  R22 )
        in A(1:K+L,N-K-L+1:N) on exit.

      If M-K-L < 0,

         U'*A*Q = D1*( 0 R )

                = K   ( I  0    0   ) * ( 0    R11  R12  R13  ) K
                  M-K ( 0  C    0   )   ( 0     0   R22  R23  )
      M-K
                        K M-K K+L-M     ( 0     0    0   R33  )
      K+L-M
                                         N-K-L  K   M-K  K+L-M

         V'*B*Q = D2*( 0 R )

                = M-K   ( 0  S    0  ) * ( 0    R11  R12  R13  ) K
                  K+L-M ( 0  0    I  )   ( 0     0   R22  R23  )
      M-K
                  P-L   ( 0  0    0  )   ( 0     0    0   R33  )
      K+L-M
                          K M-K K+L-M     N-K-L  K   M-K  K+L-M
      where

        C = diag( ALPHA(K+1), ... , ALPHA(M) ),
        S = diag( BETA(K+1),  ... , BETA(M) ), C**2 + S**2 = I.
        R = ( R11 R12 R13 ) is a nonsingular upper triangular
      matrix,
            (  0  R22 R23 )
            (  0   0  R33 )
        (R11 R12 R13 ) is stored in A(1:M, N-K-L+1:N), and R33 is
      stored
        ( 0  R22 R23 )
        in B(M-K+1:L,N+M-K-L+1:N) on exit.

      The routine computes C, S, R, and optionally the orthogonal
      transformation matrices U, V and Q.

      In particular, if B is an N-by-N nonsingular matrix, then
      the GSVD of A and B implicitly gives the SVD of the matrix
      A*inv(B):
                           A*inv(B) = U*(D1*inv(D2))*V'.
      If ( A',B')' has orthonormal columns, then the GSVD of A and
      B is also equal to the CS decomposition of A and B. Further-
      more, the GSVD can be used to derive the solution of the
      eigenvalue problem:
                           A'*A x = lambda* B'*B x.
      In some literature, the GSVD of A and B is presented in the
      form
                       U'*A*X = ( 0 D1 ),   V'*B*X = ( 0 D2 )
      (2) where U and V are orthogonal and X is nonsingular, D1

      and D2 are ``diagonal''.  It is easy to see that the GSVD
      form (1) can be converted to the form (2) by taking the non-
      singular matrix X as

                           X = Q*( I   0    )
                                 ( 0 inv(R) ).

 ARGUMENTS
      JOBU    (input) CHARACTER*1
              = 'U':  Orthogonal matrix U is computed;
              = 'N':  U is not computed.

      JOBV    (input) CHARACTER*1
              = 'V':  Orthogonal matrix V is computed;
              = 'N':  V is not computed.

      JOBQ    (input) CHARACTER*1
              = 'Q':  Orthogonal matrix Q is computed;
              = 'N':  Q is not computed.

      M       (input) INTEGER
              The number of rows of the matrix A.  M >= 0.

      N       (input) INTEGER
              The number of columns of the matrices A and B.  N >=
              0.

      P       (input) INTEGER
              The number of rows of the matrix B.  P >= 0.

      K       (output) INTEGER
              L       (output) INTEGER On exit, K and L specify
              the dimension of the subblocks described in the Pur-
              pose section.  K + L = effective numerical rank of
              (A',B')'.

      A       (input/output) DOUBLE PRECISION array, dimension (LDA,N)
              On entry, the M-by-N matrix A.  On exit, A contains
              the triangular matrix R, or part of R.  See Purpose
              for details.

      LDA     (input) INTEGER
              The leading dimension of the array A. LDA >=
              MAX(1,M).

      B       (input/output) DOUBLE PRECISION array, dimension (LDB,N)
              On entry, the P-by-N matrix B.  On exit, B contains
              the triangular matrix R if necessary.  See Purpose
              for details.

      LDB     (input) INTEGER

              The leading dimension of the array B. LDA >=
              MAX(1,P).

      ALPHA   (output) DOUBLE PRECISION arrays, dimension (N)
              BETA    (output) DOUBLE PRECISION array, dimension
              (N) On exit, ALPHA and BETA contain the generalized
              singular value pairs of A and B; if M-K-L >= 0,
              ALPHA(1:K) = ONE,  ALPHA(K+1:K+L) = C,
              BETA(1:K)  = ZERO, BETA(K+1:K+L)  = S, or if M-K-L <
              0, ALPHA(1:K)=ONE,  ALPHA(K+1:M)=C,
              ALPHA(M+1:K+L)=ZERO
              BETA(1:K) =ZERO, BETA(K+1:M) =S, BETA(M+1:K+L) =ONE
              and ALPHA(K+L+1:N) = ZERO
              BETA(K+L+1:N)  = ZERO

      U       (output) DOUBLE PRECISION array, dimension (LDU,M)
              If JOBU = 'U', U contains the M-by-M orthogonal
              matrix U.  If JOBU = 'N', U is not referenced.

      LDU     (input) INTEGER
              The leading dimension of the array U. LDU >=
              MAX(1,M).

      V       (output) DOUBLE PRECISION array, dimension (LDV,P)
              If JOBV = 'V', V contains the P-by-P orthogonal
              matrix V.  If JOBV = 'N', V is not referenced.

      LDV     (input) INTEGER
              The leading dimension of the array V. LDA >=
              MAX(1,P).

      Q       (output) DOUBLE PRECISION array, dimension (LDQ,N)
              If JOBQ = 'Q', Q contains the N-by-N orthogonal
              matrix Q.  If JOBQ = 'N', Q is not referenced.

      LDQ     (input) INTEGER
              The leading dimension of the array Q. LDQ >=
              MAX(1,N).

      WORK    (workspace) DOUBLE PRECISION array,
              dimension (MAX(3*N,M,P)+N)

      IWORK   (workspace) INTEGER array, dimension (N)

      INFO    (output)INTEGER
              = 0:  successful exit
              < 0:  if INFO = -i, the i-th argument had an illegal
              value.
              > 0:  if INFO = 1, the Jacobi-type procedure failed
              to converge.  For further details, see subroutine
              DTGSJA.

 PARAMETERS
      TOLA    DOUBLE PRECISION
              TOLB    DOUBLE PRECISION TOLA and TOLB are the
              thresholds to determine the effective rank of
              (A',B')'. Generally, they are set to TOLA =
              MAX(M,N)*norm(A)*MAZHEPS, TOLB =
              MAX(P,N)*norm(B)*MAZHEPS.  The size of TOLA and TOLB
              may affect the size of backward errors of the decom-
              position.