Previous: csysv Up: ../lapack-c.html Next: csytf2
NAME CSYSVX - use the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, SYNOPSIS SUBROUTINE CSYSVX( FACT, UPLO, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, RCOND, FERR, BERR, WORK, LWORK, RWORK, INFO ) CHARACTER FACT, UPLO INTEGER INFO, LDA, LDAF, LDB, LDX, LWORK, N, NRHS REAL RCOND INTEGER IPIV( * ) REAL BERR( * ), FERR( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), WORK( * ), X( LDX, * ) PURPOSE CSYSVX uses the diagonal pivoting factorization to compute the solution to a complex system of linear equations A * X = B, where A is an N-by-N symmetric matrix and X and B are N- by-NRHS matrices. Error bounds on the solution and a condition estimate are also provided. DESCRIPTION The following steps are performed: 1. If FACT = 'N', the diagonal pivoting method is used to factor A. The form of the factorization is A = U * D * U**T, if UPLO = 'U', or A = L * D * L**T, if UPLO = 'L', where U (or L) is a product of permutation and unit upper (lower) triangular matrices, and D is symmetric and block diago- nal with 1-by-1 and 2-by-2 diagonal blocks. 2. The factored form of A is used to estimate the condition number of the matrix A. If the reciprocal of the condition number is less than machine precision, steps 3 and 4 are skipped. 3. The system of equations is solved for X using the fac- tored form of A. 4. Iterative refinement is applied to improve the computed solution matrix and calculate error bounds and backward error estimates for it. ARGUMENTS FACT (input) CHARACTER*1 Specifies whether or not the factored form of A has been supplied on entry. = 'F': On entry, AF and IPIV contain the factored form of A. A, AF and IPIV will not be modified. = 'N': The matrix A will be copied to AF and factored. UPLO (input) CHARACTER*1 = 'U': Upper triangle of A is stored; = 'L': Lower triangle of A is stored. N (input) INTEGER The number of linear equations, i.e., the order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) COMPLEX array, dimension (LDA,N) The symmetric matrix A. If UPLO = 'U', the leading N-by-N upper triangular part of A contains the upper triangular part of the matrix A, and the strictly lower triangular part of A is not referenced. If UPLO = 'L', the leading N-by-N lower triangular part of A contains the lower triangular part of the matrix A, and the strictly upper triangular part of A is not referenced. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input or output) COMPLEX array, dimension (LDAF,N) If FACT = 'F', then AF is an input argument and on entry contains the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T as computed by CSYTRF. If FACT = 'N', then AF is an output argument and on exit returns the block diagonal matrix D and the multipliers used to obtain the factor U or L from the factorization A = U*D*U**T or A = L*D*L**T. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input or output) INTEGER array, dimension (N) If FACT = 'F', then IPIV is an input argument and on entry contains details of the interchanges and the block structure of D, as determined by CSYTRF. If IPIV(k) > 0, then rows and columns k and IPIV(k) were interchanged and D(k,k) is a 1-by-1 diagonal block. If UPLO = 'U' and IPIV(k) = IPIV(k-1) < 0, then rows and columns k-1 and -IPIV(k) were inter- changed and D(k-1:k,k-1:k) is a 2-by-2 diagonal block. If UPLO = 'L' and IPIV(k) = IPIV(k+1) < 0, then rows and columns k+1 and -IPIV(k) were inter- changed and D(k:k+1,k:k+1) is a 2-by-2 diagonal block. If FACT = 'N', then IPIV is an output argument and on exit contains details of the interchanges and the block structure of D, as determined by CSYTRF. B (input) COMPLEX array, dimension (LDB,NRHS) The N-by-NRHS right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (output) COMPLEX array, dimension (LDX,NRHS) If INFO = 0, the N-by-NRHS solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). RCOND (output) REAL The estimate of the reciprocal condition number of the matrix A. If RCOND is less than the machine precision (in particular, if RCOND = 0), the matrix is singular to working precision. This condition is indicated by a return code of INFO > 0, and the solution and error bounds are not computed. FERR (output) REAL array, dimension (NRHS) The estimated forward error bounds for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution, FERR(j) bounds the magnitude of the largest entry in (X(j) - XTRUE) divided by the magnitude of the largest entry in X(j). The quality of the error bound depends on the quality of the estimate of norm(inv(A)) computed in the code; if the estimate of norm(inv(A)) is accu- rate, the error bound is guaranteed. BERR (output) REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any entry of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX array, dimension (LWORK) On exit, if INFO = 0, WORK(1) returns the optimal LWORK. LWORK (input) INTEGER The length of WORK. LWORK >= 2*N, and for best per- formance LWORK >= N*NB, where NB is the optimal blocksize for CSYTRF. RWORK (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value > 0: if INFO = i, and i is <= N: D(i,i) is exactly zero. The factorization has been completed, but the block diagonal matrix D is exactly singular, so the solution and error bounds could not be computed. = N+1: the block diagonal matrix D is nonsingular, but RCOND is less than machine precision. The factorization has been com- pleted, but the matrix is singular to working preci- sion, so the solution and error bounds have not been computed.