Previous: claqsy Up: ../lapack-c.html Next: clarf


clar2v


 NAME
      CLAR2V - apply a vector of complex plane rotations with real
      cosines from both sides to a sequence of 2-by-2 complex Her-
      mitian matrices,

 SYNOPSIS
      SUBROUTINE CLAR2V( N, X, Y, Z, INCX, C, S, INCC )

          INTEGER        INCC, INCX, N

          REAL           C( * )

          COMPLEX        S( * ), X( * ), Y( * ), Z( * )

 PURPOSE
      CLAR2V applies a vector of complex plane rotations with real
      cosines from both sides to a sequence of 2-by-2 complex Her-
      mitian matrices, defined by the elements of the vectors x, y
      and z. For i = 1,2,...,n

         (       x(i)  z(i) ) :=
         ( conjg(z(i)) y(i) )

           (  c(i) conjg(s(i)) ) (       x(i)  z(i) ) ( c(i)
      -conjg(s(i)) )
           ( -s(i)       c(i)  ) ( conjg(z(i)) y(i) ) ( s(i)
      c(i)  )

 ARGUMENTS
      N       (input) INTEGER
              The number of plane rotations to be applied.

      X       (input/output) COMPLEX array, dimension (1+(N-
              1)*INCX)
              The vector x; the elements of x are assumed to be
              real.

      Y       (input/output) COMPLEX array, dimension (1+(N-
              1)*INCX)
              The vector y; the elements of y are assumed to be
              real.

      Z       (input/output) COMPLEX array, dimension (1+(N-
              1)*INCX)
              The vector z.

      INCX    (input) INTEGER
              The increment between elements of X, Y and Z. INCX >
              0.

      C       (input) REAL array, dimension (1+(N-1)*INCC)

              The cosines of the plane rotations.

      S       (input) COMPLEX array, dimension (1+(N-1)*INCC)
              The sines of the plane rotations.

      INCC    (input) INTEGER
              The increment between elements of C and S. INCC > 0.