Previous: cgeqrf Up: ../lapack-c.html Next: cgerq2
NAME CGERFS - improve the computed solution to a system of linear equations and provides error bounds and backward error esti- mates for the solution SYNOPSIS SUBROUTINE CGERFS( TRANS, N, NRHS, A, LDA, AF, LDAF, IPIV, B, LDB, X, LDX, FERR, BERR, WORK, RWORK, INFO ) CHARACTER TRANS INTEGER INFO, LDA, LDAF, LDB, LDX, N, NRHS INTEGER IPIV( * ) REAL BERR( * ), FERR( * ), RWORK( * ) COMPLEX A( LDA, * ), AF( LDAF, * ), B( LDB, * ), WORK( * ), X( LDX, * ) PURPOSE CGERFS improves the computed solution to a system of linear equations and provides error bounds and backward error esti- mates for the solution. ARGUMENTS TRANS (input) CHARACTER*1 Specifies the form of the system of equations: = 'N': A * X = B (No transpose) = 'T': A**T * X = B (Transpose) = 'C': A**H * X = B (Conjugate transpose) N (input) INTEGER The order of the matrix A. N >= 0. NRHS (input) INTEGER The number of right hand sides, i.e., the number of columns of the matrices B and X. NRHS >= 0. A (input) COMPLEX array, dimension (LDA,N) The original N-by-N matrix A. LDA (input) INTEGER The leading dimension of the array A. LDA >= max(1,N). AF (input) COMPLEX array, dimension (LDAF,N) The factors L and U from the factorization A = P*L*U as computed by CGETRF. LDAF (input) INTEGER The leading dimension of the array AF. LDAF >= max(1,N). IPIV (input) INTEGER array, dimension (N) The pivot indices from CGETRF; for 1<=i<=N, row i of the matrix was interchanged with row IPIV(i). B (input) COMPLEX array, dimension (LDB,NRHS) The right hand side matrix B. LDB (input) INTEGER The leading dimension of the array B. LDB >= max(1,N). X (input/output) COMPLEX array, dimension (LDX,NRHS) On entry, the solution matrix X, as computed by CGETRS. On exit, the improved solution matrix X. LDX (input) INTEGER The leading dimension of the array X. LDX >= max(1,N). FERR (output) REAL array, dimension (NRHS) The estimated forward error bounds for each solution vector X(j) (the j-th column of the solution matrix X). If XTRUE is the true solution, FERR(j) bounds the magnitude of the largest entry in (X(j) - XTRUE) divided by the magnitude of the largest entry in X(j). The quality of the error bound depends on the quality of the estimate of norm(inv(A)) computed in the code; if the estimate of norm(inv(A)) is accu- rate, the error bound is guaranteed. BERR (output) REAL array, dimension (NRHS) The componentwise relative backward error of each solution vector X(j) (i.e., the smallest relative change in any entry of A or B that makes X(j) an exact solution). WORK (workspace) COMPLEX array, dimension (2*N) RWORK (workspace) REAL array, dimension (N) INFO (output) INTEGER = 0: successful exit < 0: if INFO = -i, the i-th argument had an illegal value PARAMETERS ITMAX is the maximum number of steps of iterative refine- ment.