Go to the first, previous, next, last section, table of contents.
The Debye functions are defined by the integral @math{D_n(x) = n/x^n
\int_0^x dt (t^n/(e^t - 1))}. For further information see Abramowitz &
Stegun, Section 27.1. The Debye functions are declared in the header
file `gsl_sf_debye.h'.
- Function: double gsl_sf_debye_1 (double x)
-
- Function: int gsl_sf_debye_1_e (double x, gsl_sf_result * result)
-
These routines compute the first-order Debye function
@math{D_1(x) = (1/x) \int_0^x dt (t/(e^t - 1))}.
- Function: double gsl_sf_debye_2 (double x)
-
- Function: int gsl_sf_debye_2_e (double x, gsl_sf_result * result)
-
These routines compute the second-order Debye function
@math{D_2(x) = (2/x^2) \int_0^x dt (t^2/(e^t - 1))}.
- Function: double gsl_sf_debye_3 (double x)
-
- Function: int gsl_sf_debye_3_e (double x, gsl_sf_result * result)
-
These routines compute the third-order Debye function
@math{D_3(x) = (3/x^3) \int_0^x dt (t^3/(e^t - 1))}.
- Function: double gsl_sf_debye_4 (double x)
-
- Function: int gsl_sf_debye_4_e (double x, gsl_sf_result * result)
-
These routines compute the fourth-order Debye function
@math{D_4(x) = (4/x^4) \int_0^x dt (t^4/(e^t - 1))}.
Go to the first, previous, next, last section, table of contents.