Go to the first, previous, next, last section, table of contents.
- Function: double gsl_sf_bessel_y0 (double x)
-
- Function: int gsl_sf_bessel_y0_e (double x, gsl_sf_result * result)
-
These routines compute the irregular spherical Bessel function of zeroth
order, @math{y_0(x) = -\cos(x)/x}.
- Function: double gsl_sf_bessel_y1 (double x)
-
- Function: int gsl_sf_bessel_y1_e (double x, gsl_sf_result * result)
-
These routines compute the irregular spherical Bessel function of first
order, @math{y_1(x) = -(\cos(x)/x + \sin(x))/x}.
- Function: double gsl_sf_bessel_y2 (double x)
-
- Function: int gsl_sf_bessel_y2_e (double x, gsl_sf_result * result)
-
These routines compute the irregular spherical Bessel function of second
order, @math{y_2(x) = (-3/x^2 + 1/x)\cos(x) - (3/x^2)\sin(x)}.
- Function: double gsl_sf_bessel_yl (int l, double x)
-
- Function: int gsl_sf_bessel_yl_e (int l, double x, gsl_sf_result * result)
-
These routines compute the irregular spherical Bessel function of
order l, @math{y_l(x)}, for @c{$l \geq 0$}
@math{l >= 0}.
- Function: int gsl_sf_bessel_yl_array (int lmax, double x, double result_array[])
-
This routine computes the values of the irregular spherical Bessel
functions @math{y_l(x)} for @math{l} from 0 to lmax
inclusive for @c{$lmax \geq 0$}
@math{lmax >= 0}, storing the results in the array result_array.
The values are computed using recurrence relations, for
efficiency, and therefore may differ slightly from the exact values.
Go to the first, previous, next, last section, table of contents.