This example program finds the minimum of the paraboloid function defined earlier. The location of the minimum is offset from the origin in @math{x} and @math{y}, and the function value at the minimum is non-zero. The main program is given below, it requires the example function given earlier in this chapter.
int main (void) { size_t iter = 0; int status; const gsl_multimin_fdfminimizer_type *T; gsl_multimin_fdfminimizer *s; /* Position of the minimum (1,2). */ double par[2] = { 1.0, 2.0 }; gsl_vector *x; gsl_multimin_function_fdf my_func; my_func.f = &my_f; my_func.df = &my_df; my_func.fdf = &my_fdf; my_func.n = 2; my_func.params = ∥ /* Starting point, x = (5,7) */ x = gsl_vector_alloc (2); gsl_vector_set (x, 0, 5.0); gsl_vector_set (x, 1, 7.0); T = gsl_multimin_fdfminimizer_conjugate_fr; s = gsl_multimin_fdfminimizer_alloc (T, 2); gsl_multimin_fdfminimizer_set (s, &my_func, x, 0.01, 1e-4); do { iter++; status = gsl_multimin_fdfminimizer_iterate (s); if (status) break; status = gsl_multimin_test_gradient (s->gradient, 1e-3); if (status == GSL_SUCCESS) printf ("Minimum found at:\n"); printf ("%5d %.5f %.5f %10.5f\n", iter, gsl_vector_get (s->x, 0), gsl_vector_get (s->x, 1), s->f); } while (status == GSL_CONTINUE && iter < 100); gsl_multimin_fdfminimizer_free (s); gsl_vector_free (x); return 0; }
The initial step-size is chosen as 0.01, a conservative estimate in this case, and the line minimization parameter is set at 0.0001. The program terminates when the norm of the gradient has been reduced below 0.001. The output of the program is shown below,
x y f 1 4.99629 6.99072 687.84780 2 4.98886 6.97215 683.55456 3 4.97400 6.93501 675.01278 4 4.94429 6.86073 658.10798 5 4.88487 6.71217 625.01340 6 4.76602 6.41506 561.68440 7 4.52833 5.82083 446.46694 8 4.05295 4.63238 261.79422 9 3.10219 2.25548 75.49762 10 2.85185 1.62963 67.03704 11 2.19088 1.76182 45.31640 12 0.86892 2.02622 30.18555 Minimum found at: 13 1.00000 2.00000 30.00000
Note that the algorithm gradually increases the step size as it successfully moves downhill, as can be seen by plotting the successive points.
@image{multimin,4in} The conjugate gradient algorithm finds the minimum on its second direction because the function is purely quadratic. Additional iterations would be needed for a more complicated function.