The following program demonstrates the use of the interpolation and spline functions. It computes a cubic spline interpolation of the 10-point dataset @math{(x_i, y_i)} where @math{x_i = i + \sin(i)/2} and @math{y_i = i + \cos(i^2)} for @math{i = 0 \dots 9}.
#include <config.h>
#include <stdlib.h>
#include <stdio.h>
#include <math.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
int
main (void)
{
int i;
double xi, yi, x[10], y[10];
printf ("#m=0,S=2\n");
for (i = 0; i < 10; i++)
{
x[i] = i + 0.5 * sin (i);
y[i] = i + cos (i * i);
printf ("%g %g\n", x[i], y[i]);
}
printf ("#m=1,S=0\n");
{
gsl_interp_accel *acc
= gsl_interp_accel_alloc ();
gsl_spline *spline
= gsl_spline_alloc (gsl_interp_cspline, 10);
gsl_spline_init (spline, x, y, 10);
for (xi = x[0]; xi < x[9]; xi += 0.01)
{
double yi = gsl_spline_eval (spline, xi, acc);
printf ("%g %g\n", xi, yi);
}
gsl_spline_free (spline);
gsl_interp_accel_free(acc);
}
return 0;
}
The output is designed to be used with the GNU plotutils
graph program,
$ ./a.out > interp.dat $ graph -T ps < interp.dat > interp.ps
@image{interp,3in}
The result shows a smooth interpolation of the original points. The
interpolation method can changed simply by varying the first argument of
gsl_spline_alloc.