Go to the first, previous, next, last section, table of contents.
The routines solve the general @math{n}-dimensional first-order system,
for @math{i = 1, \dots, n}. The stepping functions rely on the vector
of derivatives @math{f_i} and the Jacobian matrix,
@math{J_{ij} = df_i(t,y(t)) / dy_j}.
A system of equations is defined using the gsl_odeiv_system
datatype.
- Data Type: gsl_odeiv_system
-
This data type defines a general ODE system with arbitrary parameters.
int (* function) (double t, const double y[], double dydt[], void * params)
-
This function should store the elements of
@math{f(t,y,params)} in the array dydt,
for arguments (t,y) and parameters params
int (* jacobian) (double t, const double y[], double * dfdy, double dfdt[], void * params);
-
This function should store the elements of @math{f(t,y,params)} in
the array dfdt and the Jacobian matrix @c{$J_{ij}$}
@math{J_{ij}} in the the array
dfdy regarded as a row-ordered matrix
J(i,j) = dfdy[i * dim + j]
where dim
is the dimension of the system.
size_t dimension;
-
This is the dimension of the system of equations
void * params
-
This is a pointer to the arbitrary parameters of the system.
Go to the first, previous, next, last section, table of contents.