Go to the first, previous, next, last section, table of contents.

Examples

The following program computes the eigenvalues and eigenvectors of the 4-th order Hilbert matrix, @math{H(i,j) = 1/(i + j + 1)}.

#include <stdio.h>
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>

int
main (void)
{
  double data[] = { 1.0  , 1/2.0, 1/3.0, 1/4.0,
                    1/2.0, 1/3.0, 1/4.0, 1/5.0,
                    1/3.0, 1/4.0, 1/5.0, 1/6.0,
                    1/4.0, 1/5.0, 1/6.0, 1/7.0 };

  gsl_matrix_view m 
    = gsl_matrix_view_array(data, 4, 4);

  gsl_vector *eval = gsl_vector_alloc (4);
  gsl_matrix *evec = gsl_matrix_alloc (4, 4);

  gsl_eigen_symmv_workspace * w = 
    gsl_eigen_symmv_alloc (4);
  
  gsl_eigen_symmv (&m.matrix, eval, evec, w);

  gsl_eigen_symmv_free(w);

  gsl_eigen_symmv_sort (eval, evec, 
                        GSL_EIGEN_SORT_ABS_ASC);
  
  {
    int i;

    for (i = 0; i < 4; i++)
      {
        double eval_i 
           = gsl_vector_get(eval, i);
        gsl_vector_view evec_i 
           = gsl_matrix_column(evec, i);

        printf("eigenvalue = %g\n", eval_i);
        printf("eigenvector = \n");
        gsl_vector_fprintf(stdout, 
                           &evec_i.vector, "%g");
      }
  }

  return 0;
}

Here is the beginning of the output from the program,

$ ./a.out 
eigenvalue = 9.67023e-05
eigenvector = 
-0.0291933
0.328712
-0.791411
0.514553
...

This can be compared with the corresponding output from GNU OCTAVE,

octave> [v,d] = eig(hilb(4));
octave> diag(d)  
ans =

   9.6702e-05
   6.7383e-03
   1.6914e-01
   1.5002e+00

octave> v 
v =

   0.029193   0.179186  -0.582076   0.792608
  -0.328712  -0.741918   0.370502   0.451923
   0.791411   0.100228   0.509579   0.322416
  -0.514553   0.638283   0.514048   0.252161

Note that the eigenvectors can differ by a change of sign, since the sign of an eigenvector is arbitrary.


Go to the first, previous, next, last section, table of contents.