The following program solves the linear system @math{A x = b}. The system to be solved is,
and the solution is found using LU decomposition of the matrix @math{A}.
#include <stdio.h> #include <gsl/gsl_linalg.h> int main (void) { double a_data[] = { 0.18, 0.60, 0.57, 0.96, 0.41, 0.24, 0.99, 0.58, 0.14, 0.30, 0.97, 0.66, 0.51, 0.13, 0.19, 0.85 }; double b_data[] = { 1.0, 2.0, 3.0, 4.0 }; gsl_matrix_view m = gsl_matrix_view_array(a_data, 4, 4); gsl_vector_view b = gsl_vector_view_array(b_data, 4); gsl_vector *x = gsl_vector_alloc (4); int s; gsl_permutation * p = gsl_permutation_alloc (4); gsl_linalg_LU_decomp (&m.matrix, p, &s); gsl_linalg_LU_solve (&m.matrix, p, &b.vector, x); printf ("x = \n"); gsl_vector_fprintf(stdout, x, "%g"); gsl_permutation_free (p); return 0; }
Here is the output from the program,
x = -4.05205 -12.6056 1.66091 8.69377
This can be verified by multiplying the solution @math{x} by the original matrix @math{A} using GNU OCTAVE,
octave> A = [ 0.18, 0.60, 0.57, 0.96; 0.41, 0.24, 0.99, 0.58; 0.14, 0.30, 0.97, 0.66; 0.51, 0.13, 0.19, 0.85 ]; octave> x = [ -4.05205; -12.6056; 1.66091; 8.69377]; octave> A * x ans = 1.0000 2.0000 3.0000 4.0000
This reproduces the original right-hand side vector, @math{b}, in accordance with the equation @math{A x = b}.