Go to the first, previous, next, last section, table of contents.

Level 2

Function: int gsl_blas_sgemv (CBLAS_TRANSPOSE_t TransA, float alpha, const gsl_matrix_float * A, const gsl_vector_float * x, float beta, gsl_vector_float * y)
Function: int gsl_blas_dgemv (CBLAS_TRANSPOSE_t TransA, double alpha, const gsl_matrix * A, const gsl_vector * x, double beta, gsl_vector * y)
Function: int gsl_blas_cgemv (CBLAS_TRANSPOSE_t TransA, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * x, const gsl_complex_float beta, gsl_vector_complex_float * y)
Function: int gsl_blas_zgemv (CBLAS_TRANSPOSE_t TransA, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_vector_complex * x, const gsl_complex beta, gsl_vector_complex * y)
These functions compute the matrix-vector product and sum @math{y = \alpha op(A) x + \beta y}, where @math{op(A) = A}, @math{A^T}, @math{A^H} for TransA = CblasNoTrans, CblasTrans, CblasConjTrans.

Function: int gsl_blas_strmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_float * A, gsl_vector_float * x)
Function: int gsl_blas_dtrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * x)
Function: int gsl_blas_ctrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A, gsl_vector_complex_float * x)
Function: int gsl_blas_ztrmv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex * A, gsl_vector_complex * x)
These functions compute the matrix-vector product and sum @math{y =\alpha op(A) x + \beta y} for the triangular matrix A, where @math{op(A) = A}, @math{A^T}, @math{A^H} for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

Function: int gsl_blas_strsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_float * A, gsl_vector_float * x)
Function: int gsl_blas_dtrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix * A, gsl_vector * x)
Function: int gsl_blas_ctrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex_float * A, gsl_vector_complex_float * x)
Function: int gsl_blas_ztrsv (CBLAS_UPLO_t Uplo, CBLAS_TRANSPOSE_t TransA, CBLAS_DIAG_t Diag, const gsl_matrix_complex * A, gsl_vector_complex *x)
These functions compute @math{inv(op(A)) x} for x, where @math{op(A) = A}, @math{A^T}, @math{A^H} for TransA = CblasNoTrans, CblasTrans, CblasConjTrans. When Uplo is CblasUpper then the upper triangle of A is used, and when Uplo is CblasLower then the lower triangle of A is used. If Diag is CblasNonUnit then the diagonal of the matrix is used, but if Diag is CblasUnit then the diagonal elements of the matrix A are taken as unity and are not referenced.

Function: int gsl_blas_ssymv (CBLAS_UPLO_t Uplo, float alpha, const gsl_matrix_float * A, const gsl_vector_float * x, float beta, gsl_vector_float * y)
Function: int gsl_blas_dsymv (CBLAS_UPLO_t Uplo, double alpha, const gsl_matrix * A, const gsl_vector * x, double beta, gsl_vector * y)
These functions compute the matrix-vector product and sum @math{y = \alpha A x + \beta y} for the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

Function: int gsl_blas_chemv (CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_matrix_complex_float * A, const gsl_vector_complex_float * x, const gsl_complex_float beta, gsl_vector_complex_float * y)
Function: int gsl_blas_zhemv (CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_matrix_complex * A, const gsl_vector_complex * x, const gsl_complex beta, gsl_vector_complex * y)
These functions compute the matrix-vector product and sum @math{y = \alpha A x + \beta y} for the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically assumed to be zero and are not referenced.

Function: int gsl_blas_sger (float alpha, const gsl_vector_float * x, const gsl_vector_float * y, gsl_matrix_float * A)
Function: int gsl_blas_dger (double alpha, const gsl_vector * x, const gsl_vector * y, gsl_matrix * A)
Function: int gsl_blas_cgeru (const gsl_complex_float alpha, const gsl_vector_complex_float * x, const gsl_vector_complex_float * y, gsl_matrix_complex_float * A)
Function: int gsl_blas_zgeru (const gsl_complex alpha, const gsl_vector_complex * x, const gsl_vector_complex * y, gsl_matrix_complex * A)
These functions compute the rank-1 update @math{A = \alpha x y^T + A} of the matrix A.

Function: int gsl_blas_cgerc (const gsl_complex_float alpha, const gsl_vector_complex_float * x, const gsl_vector_complex_float * y, gsl_matrix_complex_float * A)
Function: int gsl_blas_zgerc (const gsl_complex alpha, const gsl_vector_complex * x, const gsl_vector_complex * y, gsl_matrix_complex * A)
These functions compute the conjugate rank-1 update @math{A = \alpha x y^H + A} of the matrix A.

Function: int gsl_blas_ssyr (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float * x, gsl_matrix_float * A)
Function: int gsl_blas_dsyr (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector * x, gsl_matrix * A)
These functions compute the symmetric rank-1 update @math{A = \alpha x x^T + A} of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

Function: int gsl_blas_cher (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_complex_float * x, gsl_matrix_complex_float * A)
Function: int gsl_blas_zher (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector_complex * x, gsl_matrix_complex * A)
These functions compute the hermitian rank-1 update @math{A = \alpha x x^H + A} of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.

Function: int gsl_blas_ssyr2 (CBLAS_UPLO_t Uplo, float alpha, const gsl_vector_float * x, const gsl_vector_float * y, gsl_matrix_float * A)
Function: int gsl_blas_dsyr2 (CBLAS_UPLO_t Uplo, double alpha, const gsl_vector * x, const gsl_vector * y, gsl_matrix * A)
These functions compute the symmetric rank-2 update @math{A = \alpha x y^T + \alpha y x^T + A} of the symmetric matrix A. Since the matrix A is symmetric only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used.

Function: int gsl_blas_cher2 (CBLAS_UPLO_t Uplo, const gsl_complex_float alpha, const gsl_vector_complex_float * x, const gsl_vector_complex_float * y, gsl_matrix_complex_float * A)
Function: int gsl_blas_zher2 (CBLAS_UPLO_t Uplo, const gsl_complex alpha, const gsl_vector_complex * x, const gsl_vector_complex * y, gsl_matrix_complex * A)
These functions compute the hermitian rank-2 update @math{A = \alpha x y^H + \alpha^* y x^H A} of the hermitian matrix A. Since the matrix A is hermitian only its upper half or lower half need to be stored. When Uplo is CblasUpper then the upper triangle and diagonal of A are used, and when Uplo is CblasLower then the lower triangle and diagonal of A are used. The imaginary elements of the diagonal are automatically set to zero.


Go to the first, previous, next, last section, table of contents.