Go to the first, previous, next, last section, table of contents.

Riemann Zeta Function

The Riemann zeta function is defined by the infinite sum @math{\zeta(s) = \sum_{k=1}^\infty k^{-s}}.

Function: double gsl_sf_zeta_int (int n)
Function: int gsl_sf_zeta_int_e (int n, gsl_sf_result * result)
These routines compute the Riemann zeta function @math{\zeta(n)} for integer n, @math{n \ne 1}.

Function: double gsl_sf_zeta (double s)
Function: int gsl_sf_zeta_e (double s, gsl_sf_result * result)
These routines compute the Riemann zeta function @math{\zeta(s)} for arbitrary s, @math{s \ne 1}.


Go to the first, previous, next, last section, table of contents.