Go to the first, previous, next, last section, table of contents.
The Riemann zeta function is defined by the infinite sum
@math{\zeta(s) = \sum_{k=1}^\infty k^{-s}}.
- Function: double gsl_sf_zeta_int (int n)
-
- Function: int gsl_sf_zeta_int_e (int n, gsl_sf_result * result)
-
These routines compute the Riemann zeta function @math{\zeta(n)}
for integer n,
@math{n \ne 1}.
- Function: double gsl_sf_zeta (double s)
-
- Function: int gsl_sf_zeta_e (double s, gsl_sf_result * result)
-
These routines compute the Riemann zeta function @math{\zeta(s)}
for arbitrary s,
@math{s \ne 1}.
Go to the first, previous, next, last section, table of contents.