Go to the first, previous, next, last section, table of contents.
The Laguerre polynomials are defined in terms of confluent
hypergeometric functions as
@math{L^a_n(x) = ((a+1)_n / n!) 1F1(-n,a+1,x)}. These functions are
declared in the header file `gsl_sf_laguerre.h'.
- Function: double gsl_sf_laguerre_1 (double a, double x)
-
- Function: double gsl_sf_laguerre_2 (double a, double x)
-
- Function: double gsl_sf_laguerre_3 (double a, double x)
-
- Function: int gsl_sf_laguerre_1_e (double a, double x, gsl_sf_result * result)
-
- Function: int gsl_sf_laguerre_2_e (double a, double x, gsl_sf_result * result)
-
- Function: int gsl_sf_laguerre_3_e (double a, double x, gsl_sf_result * result)
-
These routines evaluate the generalized Laguerre polynomials
@math{L^a_1(x)}, @math{L^a_2(x)}, @math{L^a_3(x)} using explicit
representations.
- Function: double gsl_sf_laguerre_n (const int n, const double a, const double x)
-
- Function: int gsl_sf_laguerre_n_e (int n, double a, double x, gsl_sf_result * result)
-
Thse routines evaluate the generalized Laguerre polynomials
@math{L^a_n(x)} for @math{a > -1},
@math{n >= 0}.
Go to the first, previous, next, last section, table of contents.