Go to the first, previous, next, last section, table of contents.
The Gegenbauer polynomials are defined in Abramowitz & Stegun, Chapter
22, where they are known as Ultraspherical polynomials. The functions
described in this section are declared in the header file
`gsl_sf_gegenbauer.h'.
- Function: double gsl_sf_gegenpoly_1 (double lambda, double x)
-
- Function: double gsl_sf_gegenpoly_2 (double lambda, double x)
-
- Function: double gsl_sf_gegenpoly_3 (double lambda, double x)
-
- Function: int gsl_sf_gegenpoly_1_e (double lambda, double x, gsl_sf_result * result)
-
- Function: int gsl_sf_gegenpoly_2_e (double lambda, double x, gsl_sf_result * result)
-
- Function: int gsl_sf_gegenpoly_3_e (double lambda, double x, gsl_sf_result * result)
-
These functions evaluate the Gegenbauer polynomials
@math{C^{(\lambda)}_n(x)} using explicit
representations for @math{n =1, 2, 3}.
- Function: double gsl_sf_gegenpoly_n (int n, double lambda, double x)
-
- Function: int gsl_sf_gegenpoly_n_e (int n, double lambda, double x, gsl_sf_result * result)
-
These functions evaluate the Gegenbauer polynomial @c{$C^{(\lambda)}_n(x)$}
@math{C^{(\lambda)}_n(x)} for a specific value of n,
lambda, x subject to @math{\lambda > -1/2}, @c{$n \ge 0$}
@math{n >= 0}.
- Function: int gsl_sf_gegenpoly_array (int nmax, double lambda, double x, double result_array[])
-
This function computes an array of Gegenbauer polynomials
@math{C^{(\lambda)}_n(x)} for @math{n = 0, 1, 2, \dots, nmax}, subject
to @math{\lambda > -1/2}, @c{$nmax \ge 0$}
@math{nmax >= 0}.
Go to the first, previous, next, last section, table of contents.