Some arithmetic groups that do not act on the circle

Dave Witte Morris

University of Lethbridge, Alberta, Canada http://people.uleth.ca/~dave.morris Dave.Morris@uleth.ca

Lecture 3

What is an amenable group? (used to prove actions have a fixed point)

What is amenable really?

Answer

G is amenable \iff G has almost-invariant subsets.

Example

G = abelian group (f.g.) = $\mathbb{Z}^2 = \langle a, b \rangle$.

G acts on itself by left translation.

 \Rightarrow *F* is infinite.

 $F = \text{big ball} \implies F \text{ is } 99.99\% \text{ invariant ("almost inv't"):}$ $\#(F \cap aF) > (1 - \epsilon) \#F$

Bounded cohomology

Define group cohomology as usual, except that all cochains are assumed to be bounded functions.

Theorem (B. E. Johnson)

G amenable

$$\iff H^n_{\mathrm{bdd}}(G;V) = 0, \ \forall \ G\text{-module } V \left(\substack{\text{such that } V \text{ is } \\ a \ Banach \ space} \right).$$

Proof of (\Rightarrow). If *G* is finite, and |*G*| is invertible. one proves $H^n(G; V) = 0$ by averaging:

 $\overline{\alpha}(g_1,\ldots,g_n) = \frac{1}{|G|} \sum_{g \in G} \alpha(g,g_1,\ldots,g_n).$ Since *G* is amenable, we can do exactly this kind of averaging for any bounded cocycle.

Amenability: fundamental notion in group theory. Definition: dozens of choices (all equivalent).

Example

Free group $F_2 = \langle a, b \rangle$. Every el't starts with \$1:

 $f_0(g) = 1, \quad \forall g \in F_2.$

Everyone passes their dollar to the person next to them who is closer to the identity:

 $f_1(g) = \$3$ (except $f_1(e) = \$5$).

Everyone \geq \$2, & money only moved bdd distance.

Terminology

This is a *Ponzi scheme* on F_2 .

Definition

F is almost invariant (*F* is a "Følner set"):

$$\#(F \cap aF) > (1 - \epsilon) \#F \quad \forall a \in S$$

Definition

G amenable \iff G has almost-inv't finite subsets $(\forall \text{ finite } S, \ \forall \epsilon > 0)$

Exercise

Free group F_2 *is not amenable.*

Idea. $\frac{3}{4}$ of F does not start with a^{-1} . aF

 $\Rightarrow \frac{3}{4}$ of aF starts with a.

 $\Rightarrow \frac{3}{4}$ of *baF* starts with *b*.

 $aF \approx F \approx baF \implies \approx \frac{3}{4} \text{ of } F \text{ starts with } a \text{ and } b. \rightarrow c$

Proposition

G amen \iff every bdd func on G has an avg value.

Average vals of characteristic funcs of subsets of *G*:

Corollary (von Neumann's original definition)

G amen $\iff \exists$ finitely additive probability measure.

Corollary (\Leftrightarrow)

- G amenable.
- *G* acts on compact metric space *X* (by homeos)
- \Rightarrow every continuous function on X has an avg val
- $\Rightarrow \exists G$ -inv't probability measure μ on X. $(\mu(X) = 1)$

Example

 \exists *Ponzi scheme* on F_2 :

Everyone \geq \$2, & money only moved bdd distance.

Exercise

On \mathbb{Z}^n . \nexists Ponzi scheme.

 $(\exists Ponzi scheme \Rightarrow exponential growth.)$

Solvable grps of exp'l growth do *not* have a Ponzi:

Theorem (Gromov)

 \nexists Ponzi scheme on $G \iff G$ is "amenable".

Corollary

Amenability is a geometric notion (inv't under quasi-isom).

Proposition

G amen \iff every bdd func on G has an avg value. *I.e.*, $\exists A : \ell^{\infty}(G) \to \mathbb{R}$, s.t.

- A(1) = 1.
- \bullet $A(a\varphi + b\psi) = aA(\varphi) + bA(\psi)$.
- $A(\ge 0) \ge 0$,
- $A(\varphi^g) = A(\varphi).$ (translation invariant)

Proof.

Choose sequence of almost-inv't sets F_n ($\epsilon = 1/n$).

Let $A_n(\varphi) = \frac{1}{\#F_n} \sum_{x \in F_n} \varphi(x)$. Pass to subsequence, so $A_n(\varphi) \to A(\varphi)$.

Can make a consistent choice of $A(\varphi)$ for all φ .

[Ultrafilter, Hahn-Banach, Zorn's Lemma, Tychonoff, Axiom of Choice]

Corollary (\Leftrightarrow)

G amenable, acts on cpct metric space *X* (by homeos) $\Rightarrow \exists G$ -inv't probability measure μ on X. $(\mu(X) = 1)$

Corollary

G amenable, acts on S^1 (orient-preserving) \Rightarrow either: \exists finite orbit or abelianization of G is infinite.

Fact: G amenable, acts on \mathbb{R} , finitely generated \Rightarrow abelianization is ∞.

Corollary (\Leftrightarrow)

- G amenable,
- acts by (cont) linear maps on vector space (locally),
- *C* is a compact, convex. *G*-invariant subset (≠ ∅)
- $\Rightarrow \exists$ fixed point in C.

Corollary (Furstenberg)

$$\Gamma \doteq \mathrm{SL}(3,\mathbb{Z}) \subset \mathrm{SL}(3,\mathbb{R}) = G, \ P = \begin{bmatrix} * & * & * \\ & * & * \\ & & * \end{bmatrix}$$
 (amenable).

 Γ acts on $S^1 \Rightarrow \exists \Gamma$ -equivariant $\psi: G/P \to \text{Prob}(S^1)$. { probability measures on S^1 }

Theorem (Ghvs)

 ψ is constant (a.e.) ψ is measurable

- $\therefore \exists \Gamma$ -inv't point in $Prob(S^1)$
- $\therefore \exists$ finite orbit (since $\Gamma/[\Gamma,\Gamma]$ is finite).

Proof of Corollary.

 $\{\Gamma\text{-equivariant }\psi\colon G\to \operatorname{Prob}(S^1)\}\$ is convex, cpct. *P* acts by translation (on domain).

 \Rightarrow P has fixed pt, which factors through G/P. \Box

Example

$$G = F_n \implies \#(B_r \cap \ker \phi) = 1 < (\#B_r)^{\epsilon}.$$

$$G = \mathbb{Z}^n \implies \#(B_r \cap \ker \phi) \approx \frac{\#B_r}{(2r+1)^n} = (\#B_r)^{1-\epsilon}.$$

Theorem (R. I. Grigorchuk, J. M. Cohen)

 $G \text{ amenable} \iff \#(B_r \cap \ker \phi) \ge (\#B_r)^{1-\epsilon}.$

Optional exercises

- 3) locally amenable \Rightarrow amenable
- 4) \exists Følner sets \Rightarrow
 - a) ∄ Ponzi scheme.
 - b) every bdd func on *G* has an avg value.
- 5) amenable $\Rightarrow \nexists$ paradoxical decomposition. (If $G = (\coprod_{i=1}^{m} A_i) \coprod (\coprod_{j=1}^{n} B_j)$ (disjoint unions) and $g_1, \ldots, g_m, h_1, \ldots, h_n \in G$, show either $G \neq \bigcup_{i=1}^m g_i A_i$ or $G \neq \bigcup_{j=1}^n h_j B_j$.
- 6) Find an *explicit* paradoxical decomp of a free grp.
- 7) G acts on S^1 , $\exists G$ -inv't probability measure \Rightarrow \exists finite orbit or G/[G,G] is infinite.
- 8) G_1 has Ponzi, G_1 quasi-isom to $G_2 \Rightarrow G_2$ has Ponzi.

Ghys' proof:

É. Ghys: Actions de réseaux sur le cercle. *Invent.* Math. 137 (1999) 199-231.

A different way to show ψ is constant:

U. Bader, A. Furman, A. Shaker: Superrigidity, Weyl groups, and actions on the circle (preprint). http://arxiv.org/abs/math/0605276

Another definition of amenability

Notation

$$G \text{ f.g.} \Rightarrow \exists \phi \colon F_n \Rightarrow G.$$

Let $B_r = \{ \text{ words of length } \leq r \} \text{ in } F_n.$
(Note: $\#B_r \approx (2n-1)^r.$)

$$G = F_n \implies \#(B_r \cap \ker \phi) = 1 < (\#B_r)^{\epsilon}.$$

$$G = \mathbb{Z}^n \implies \#(B_r \cap \ker \phi) \approx \frac{\#B_r}{(2r+1)^n} = (\#B_r)^{1-\epsilon}.$$

I.e., amenable groups have maximal cogrowth.

Related reading

- D. Morris: *Introduction to Arithmetic Groups* (preprint). (Has chapter on amenable groups.) http://people.uleth.ca/~dave.morris/ books/IntroArithGroups.html
- **É.** Ghys: Groups acting on the circle. L'Enseignement Mathématique 47 (2001) 329-407. http://retro.seals.ch/cntmng; ?tvpe=pdf&rid=ensmat-001:2001:47::210
- \square D. W. Morris: Can lattices in $SL(n, \mathbb{R})$ act on the circle?, in Geometry, Rigidity, and Group Actions, University of Chicago Press, Chicago, 2011. http://arxiv.org/abs/0811.0051

Exercises

- 1) Examples of amenable groups:
 - a) finite groups are amenable $(S = G = F_n)$
 - b) \mathbb{Z} is amenable $(S = \{1\}, F_n = \{1, 2, 3, \dots, n\})$
 - c) amenable × amenable is amenable
 - d) abelian groups are amenable
 - e) $N \triangleleft G$ with N, G/N amen $\implies G$ amen
 - f) solvable groups are amenable (!!!)
 - g) subgrps, quotients of amen grps are amen
 - h) grps of subexp'l growth are amenable
- 2) Grps with a nonabel free subgrp are not amen. *Remark:* (difficult) There exist nonamenable groups that do not have nonabelian free subgrps. In fact, torsion groups can be nonamen.

Further reading

Amenability:

- A. L. T. Paterson: *Amenability*. American Mathematical Society, Providence, RI, 1988.
- J.-P. Pier: Amenable Locally Compact Groups. Wiley, New York, 1984.
- S. Wagon: The Banach-Tarski Paradox. Cambridge U. Press, Cambridge, 1993.

Ponzi schemes:

M. Gromov: Metric structures for Riemannian and non-Riemannian spaces. Birkhäuser, Boston, **1999.** (See Lemma 6.17 and Exercise $6.17\frac{1}{2}$ on p. 328.)