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Lecture 3
What is an amenable group?

(used to prove actions have a fixed point)
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Amenability: fundamental notion in group theory.
Definition: dozens of choices (all equivalent).

Example
Free group F2 = �a,b�. Every el’t starts with $1:

f0(g) = 1, ∀g ∈ F2.
Everyone passes their dollar to
the person next to them who is
closer to the identity:

e

ab

f1(g) = $3 (except f1(e) = $5).
Everyone ≥$2, & money only moved bdd distance.

Terminology
This is a Ponzi scheme on F2.
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Example
∃ Ponzi scheme on F2:
Everyone ≥$2, & money only moved bdd distance.

Exercise
On Zn, � ∃ Ponzi scheme.

(∃ Ponzi scheme �⇒ exponential growth.)

Solvable grps of exp’l growth do not have a Ponzi:

Theorem (Gromov)
� Ponzi scheme on G ⇐⇒ G is “amenable”.

Corollary
Amenability is a geometric notion (inv’t under quasi-isom).
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What is amenable really ?
Answer
G is amenable ⇐⇒ G has almost-invariant subsets.

Example

G = abelian group (f.g.) = Z2 = �a,b�.
G acts on itself by left translation.

F = G-inv’t subset of G,
�
aF = F, bF = F,

nonempty

�

�⇒ F is infinite.

� ∃ finite, invariant subset.

F = big ball �⇒ F is 99.99% invariant (“almost inv’t”):
#(F ∩ aF) > (1− �)#F
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Definition
F is almost invariant (F is a “Følner set”):

#(F ∩ aF) > (1− �)#F ∀a ∈ S
Definition
G amenable ⇐⇒ G has almost-inv’t finite subsets

(∀ finite S, ∀� > 0)

Exercise
Free group F2 is not amenable.

Idea.
3
4 of F does not start with a−1.

?
aa
a

aF

�⇒ 3
4 of aF starts with a.

�⇒ 3
4 of baF starts with b. ?

bb
b

baF

aF ≈ F ≈ baF �⇒ ≈3
4 of F starts with a and b. →←
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Proposition
G amen ⇐⇒ every bdd func on G has an avg value.

I.e., ∃ A : �∞(G)→ R, s.t.

A(1) = 1,

A(aϕ + bψ) = aA(ϕ)+ bA(ψ),
A(≥0 ) ≥ 0,

A
�
ϕ
g
�
= A

�
ϕ

�
. (translation invariant)

Proof.
Choose sequence of almost-inv’t sets Fn (� = 1/n).

Let An(ϕ) = 1
#Fn

�
x∈Fnϕ(x).

Pass to subsequence, so An(ϕ)→ A(ϕ).
Can make a consistent choice of A(ϕ) for all ϕ.
[Ultrafilter, Hahn-Banach, Zorn’s Lemma, Tychonoff, Axiom of Choice]
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Bounded cohomology
Define group cohomology as usual, except that all
cochains are assumed to be bounded functions.

Theorem (B. E. Johnson)
G amenable

⇐⇒ H
n

bdd(G;V) = 0, ∀ G-module V

�
such that V is

a Banach space

�

.

Proof of (⇒). If G is finite, and |G| is invertible,
one proves Hn

(G;V) = 0 by averaging:
α(g1, . . . , gn) = 1

|G|
�
g∈Gα(g, g1, . . . , gn).

Since G is amenable, we can do exactly this kind of
averaging for any bounded cocycle.
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Proposition
G amen ⇐⇒ every bdd func on G has an avg value.

Average vals of characteristic funcs of subsets of G:

Corollary (von Neumann’s original definition)
G amen ⇐⇒ ∃ finitely additive probability measure.

Corollary ( ⇐⇒ )
G amenable,

G acts on compact metric space X (by homeos)

�⇒ every continuous function on X has an avg val

�⇒ ∃ G-inv’t probability measure µ on X. (µ(X) = 1)
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Corollary ( ⇐⇒ )
G amenable, acts on cpct metric space X (by homeos)

�⇒ ∃ G-inv’t probability measure µ on X. (µ(X) = 1)

Corollary

G amenable, acts on S1 (orient-preserving) �⇒ either:

∃ finite orbit or abelianization of G is infinite.

Fact: G amenable, acts on R, finitely generated �⇒ abelianization is ∞.

Corollary ( ⇐⇒ )
G amenable,

acts by (cont) linear maps on vector space
�

locally

convex

�
,

C is a compact, convex, G-invariant subset (≠∅)

�⇒ ∃ fixed point in C .
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Corollary (Furstenberg)

Γ � SL(3,Z) ⊂ SL(3,R) = G, P =


∗ ∗ ∗

∗ ∗
∗


 (amenable).

Γ acts on S1 �⇒ ∃ Γ -equivariant

ψ : G/P → Prob(S1
). { probability measures on S1 }

Theorem (Ghys)
ψ is constant (a.e.) ψ is measurable

∴ ∃ Γ -inv’t point in Prob(S1
)

∴ ∃ finite orbit (since Γ/[Γ , Γ] is finite).

Proof of Corollary.
�

Γ -equivariant ψ : G → Prob(S1
)

�
is convex, cpct.

P acts by translation (on domain).
�⇒ P has fixed pt, which factors through G/P .
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Another definition of amenability
Notation
G f.g. �⇒ ∃φ : Fn� G.
Let Br = {words of length ≤ r } in Fn.

(Note: #Br ≈ (2n− 1)r .)

Example

G = Fn �⇒ #
�
Br ∩ kerφ

�
= 1 < (#Br)�.

G = Zn �⇒ #
�
Br ∩ kerφ

�
≈ #Br
(2r + 1)n

= (#Br)1−�.

Theorem (R. I. Grigorchuk, J. M. Cohen)

G amenable ⇐⇒ #
�
Br ∩ kerφ

�
≥ (#Br)1−�.

I.e., amenable groups have maximal cogrowth.
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Exercises
1) Examples of amenable groups:

a) finite groups are amenable (S = G = Fn)

b) Z is amenable (S = {1}, Fn = {1,2,3, · · · , n})

c) amenable× amenable is amenable
d) abelian groups are amenable
e) N �G with N,G/N amen �⇒ G amen
f) solvable groups are amenable (!!!)
g) subgrps, quotients of amen grps are amen
h) grps of subexp’l growth are amenable

2) Grps with a nonabel free subgrp are not amen.
Remark: (difficult) There exist nonamenable groups that do not have
nonabelian free subgrps. In fact, torsion groups can be nonamen.
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Optional exercises
3) locally amenable �⇒ amenable
4) ∃ Følner sets �⇒

a) � Ponzi scheme.
b) every bdd func on G has an avg value.

5) amenable �⇒ � paradoxical decomposition.
(If G =

��
m

i=1Ai
� � ��

n

j=1 Bj

�
(disjoint unions)

and g1, . . . , gm,h1, . . . , hn ∈ G,
show either G ≠

�
m

i=1 giAi or G ≠
�
n

j=1hjBj.
6) Find an explicit paradoxical decomp of a free grp.
7) G acts on S1, ∃ G-inv’t probability measure

�⇒ ∃ finite orbit or G/[G,G] is infinite.
8) G1 has Ponzi, G1 quasi-isom toG2 ⇒G2 has Ponzi.
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Related reading
D. Morris: Introduction to Arithmetic Groups

(preprint). (Has chapter on amenable groups.)
http://people.uleth.ca/~dave.morris/
books/IntroArithGroups.html

É. Ghys: Groups acting on the circle.
L’Enseignement Mathématique 47 (2001)
329–407. http://retro.seals.ch/cntmng;
?type=pdf&rid=ensmat-001:2001:47::210

D. W. Morris: Can lattices in SL(n,R) act on the
circle?, in Geometry, Rigidity, and Group Actions,
University of Chicago Press, Chicago, 2011.
http://arxiv.org/abs/0811.0051
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Further reading
Amenability:

A. L. T. Paterson: Amenability. American
Mathematical Society, Providence, RI, 1988.

J.-P. Pier: Amenable Locally Compact Groups.
Wiley, New York, 1984.

S. Wagon: The Banach-Tarski Paradox.
Cambridge U. Press, Cambridge, 1993.

Ponzi schemes:

M. Gromov: Metric structures for Riemannian

and non-Riemannian spaces. Birkhäuser, Boston,
1999. (See Lemma 6.17 and Exercise 6.171

2 on p. 328.)
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Ghys’ proof:

É. Ghys: Actions de réseaux sur le cercle. Invent.

Math. 137 (1999) 199–231.

A different way to show ψ is constant:

U. Bader, A. Furman, A. Shaker: Superrigidity,
Weyl groups, and actions on the circle (preprint).
http://arxiv.org/abs/math/0605276
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