Calculus III

Practice Problems 12

1. A fluid has density 3 and velocity field $\mathbf{V}=4 x \mathbf{I}+3 z \mathbf{J}-z \mathbf{K}$. Find the flux of the fluid out of the ball centered at the origin and of radius 4 through its boundary.
2. Let P be the parabolic cup $z=x^{2}+y^{2}$ lying over the unit disc in the $x y$-plane. Let $\mathbf{F}(x, y, z)=y \mathbf{I}-x \mathbf{J}+\mathbf{K}$. Calculate

$$
\iint_{P} \operatorname{curl} \mathbf{F} \cdot \mathbf{N} d S
$$

3. Evaluate $\iint_{S} \mathbf{F} \cdot \mathbf{N} d S$, where $\mathbf{F}(x, y, z)=x \mathbf{I}+y \mathbf{J}+z \mathbf{K}$ and S is the part of the paraboloid $z=4-x^{2}-y^{2}$ which lies above the $x y$-plane.
4. Evaluate $\iint_{S} \sqrt{1+x^{2}+y^{2}} d S$ where S is the surface given parametrically by

$$
\mathbf{X}(s, t)=s \cos t \mathbf{I}+s \sin t \mathbf{J}+t \mathbf{K}, \quad 0 \leq s \leq 5,0 \leq t \leq \pi / 2
$$

5. Let S be the part of the plane $2 x+y+3 z=12$ which lies in the first octant, oriented upward. Let the boundary ∂S of S be oriented so that S is to its left. Given the vector field $\mathbf{F}=3 x \mathbf{I}+\mathbf{J}+y \mathbf{K}$, find $\int_{\partial S} \mathbf{F} \cdot d \mathbf{X}$.
6. Let B^{+}be the half-ball $B: x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$. Let $\mathbf{F}(x, y, z)=x \mathbf{I}+y \mathbf{J}+\mathbf{K}$. Let H be the hemisphere bounding B^{+}above: $H: x^{2}+y^{2}+z^{2}=1, z \geq 0$. Calculate the flux of \mathbf{F} from B^{+}across H.
7. Let $\mathbf{F}=x^{2} \mathbf{I}+y^{2} \mathbf{J}+z^{2} \mathbf{K}$. Calculate the flux of \mathbf{F} out of the sphere S of radius 3 .
8. Let P be the piece of the plane $2 x+y+3 z=12$ which lies in the first octant, and let $\mathbf{F}=3 x \mathbf{I}+\mathbf{J}+y \mathbf{K}$. Calculate the flux of \mathbf{F} through P from below.
