2210-90 Exam 1

Summer 2013
Name \qquad
Instructions. Show all work and include appropriate explanations when space is provided. Correct answers unaccompanied by work may not receive full credit. Page 5 is blank in case you need extra paper. Please circle your final answers.

1. (16pts) Consider the vectors $\mathbf{u}=\langle 6,0,2\rangle$ and $\mathbf{v}=\langle-1,7,3\rangle$. Find
(a) $(2 \mathrm{pts}) \mathbf{v}-2 \mathbf{u}$
(b) (2pts) \|u||
(c) (2pts) The unit vector which points in the same direction as \mathbf{u}
(d) (2pts) $\mathbf{u} \cdot \mathbf{v}$
(e) (1pt) Are \mathbf{u} and \mathbf{v} orthogonal? Circle one: YES NO
(f) (3pts) $\mathbf{u} \times \mathbf{v}$
(g) (4pts) Two of the following quantities are zero (or the zero vector). Which ones? Circle two letters.
A. $\mathbf{u} \cdot(\mathbf{u} \times \mathbf{v})$
B. $\mathbf{u} \times \mathbf{u}$
C. $\mathbf{u} \cdot \mathbf{u}$
D. $\mathbf{v} \times(\mathbf{u} \times \mathbf{v})$
2. (7 pts) Find an equation of the plane consisting of all points that are equidistant from the points $P=(1,0,-1)$ and $Q=(3,2,1)$.
3. (17pts) Suppose a particle's position at time t is given by the curve

$$
\mathbf{r}(t)=(\cos t+t \sin t) \mathbf{i}+4 t^{2} \mathbf{j}+(\sin t-t \cos t) \mathbf{k}
$$

For this problem, it is helpful if you remember the trig identity $\sin ^{2} t+\cos ^{2} t=1$.
(a) (2pts) Find the velocity $\mathbf{v}(t)$ of the particle at time t.
(b) (3pts) Find the arc length of the curve between times $t=0$ and $t=2$.
(c) (2pts) Find the acceleration $\mathbf{a}(t)$ of the particle at time t.
(d) (2pts) Find the unit tangent vector $\mathbf{T}(t)=\frac{\mathbf{v}(t)}{\|\mathbf{v}(t)\|}$.
(e) (3pts) Find the principal unit normal vector $\mathbf{N}(t)=\frac{\mathbf{T}^{\prime}(t)}{\left\|\mathbf{T}^{\prime}(t)\right\|}$.
(f) (5pts) Find the curvature $\kappa(t)$ of the particle's path at time t.
4. (5pts) Suppose the acceleration of a particle is given by

$$
\mathbf{a}(t)=\left\langle 2 t, t+\sin t, e^{-t}\right\rangle .
$$

If the particle's initial velocity is $\mathbf{v}(0)=\langle 2,-3,1\rangle$, what is the velocity of the particle at time t ?
5. (14pts) Match the equation with the type of surface it determines by writing the appropriate capital letter (A-G) in the provided blank. Each letter should be used exactly once.
\qquad

$$
x^{2}+y^{2}+z^{2}=1
$$

\qquad $x^{2}+z^{2}-y^{2}=1$
A Elliptic Paraboloid
B Ellipsoid
$-$
$x^{2}+2 y^{2}+3 z^{2}=1$
C Hyperboloid of one sheet
\qquad $x^{2}-2 y^{2}-z=0$
D Hyperboloid of two sheets
\qquad $y=x+3 z-7$
E Hyperbolic Paraboloid
F Plane
\qquad $x^{2}+2 y^{2}-z=0$
G Sphere
6. (8 pts) Match the equation and the description of the surface by writing the appropriate capital letter (A-D) in the provided blank. Each letter should be used exactly once.
(a) In cylindrical coordinates, the surface $z=r^{2}$.
(b) In cylindrical coordinates, the surface $r^{2}+z^{2}=4$.
(c) In spherical coordinates, the surface $\rho=2 \cos \phi$.
(d) \qquad In spherical coordinates, the surface $\theta=\frac{3 \pi}{4}$.

A a sphere centered at the origin.
B a half-plane.
C a paraboloid
D a sphere centered at the point $(0,0,1)$ in Cartesian coordinates.
7. (9pts) Convert between Cartesian, cylindrical, and spherical coordinates as indicated. Please simplify as much as possible.
(a) Find the cylindrical coordinates of the point with Cartesian coordinates $(-1,1,3)$

$$
r=\square \quad \theta=\square \quad z=
$$

(b) Find the spherical coordinates of the point with Cartesian coordinates $(1, \sqrt{3},-2)$

$$
\rho=\square \quad \theta=\square \quad \phi=
$$

(c) Find the Cartesian coordinates of the point with cylindrical coordinates $\left(2, \frac{\pi}{6}, \pi\right)$

$$
x=
$$

$$
y=
$$

$$
z=
$$

8. (12pts) Evaluate the following limits. If they do not exist, write 'DNE' and explain why.
(a) $\lim _{(x, y) \rightarrow(0,0)} \frac{e^{x^{2}+y^{2}}}{1+x^{2}+y^{2}}$
(b) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2}+y}{x^{2}-y}$
(c) $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{3} y}{x^{2}+y^{2}} \quad$ Hint: Use polar coordinates.
(d) $\lim _{h \rightarrow 0} \frac{\sin ((x+h) y)-\sin (x y)}{h} \quad$ Hint: Think derivative.
9. (12pts) Consider the function

$$
f(x, y)=x y \cos \left(x^{2}\right)
$$

Compute the following partial derivatives:
(a) $f_{x}(x, y)=$
(b) $f_{y}(x, y)=$
(c) $f_{y y}(x, y)=$
(d) Find $\nabla f(0,2)$. That is find the gradient of f at the point $(0,2)$.

