Calculus I

Exam 1, Spring 2003, Answers

1. Find the equation of the line which goes through the point $(3,-2)$ and is parallel to the line given by the equation $2 x-3 y=1$.

Answer. Writing the equation of the given line as $y=(2 / 3) x-(1 / 3)$, we see it has slope $m=2 / 3$. Thus, the line we seek goes through $(3,-2)$ and has slope $2 / 3$, so has the equation

$$
\frac{y+2}{x-3}=\frac{2}{3} \quad \text { or } \quad y=\frac{2}{3} x-4
$$

2. Find the derivatives of the following functions:
a) $f(x)=3 x^{4}-8 x^{2}+x$

Answer. $f^{\prime}(x)=3\left(4 x^{3}\right)-8(2 x)+1$, or $f^{\prime}(x)=12 x^{3}-16 x+1$.
b) $g(x)=(x+1)\left(\frac{1}{x}+1\right)$

Answer. First write the function in exponential notation: $g(x)=(x+1)\left(x^{-1}+1\right)$ and now use the product rule:

$$
g^{\prime}(x)=(1)\left(x^{-1}+1\right)+(x+1)\left(-x^{-2}\right)=1-x^{-2}
$$

c) $h(x)=\frac{x^{2}+1}{x+1}$

Answer. Use the quotient rule:

$$
h^{\prime}(x)=\frac{(x+1)(2 x)-\left(x^{2}+1\right)}{(x+1)^{2}}=\frac{x^{2}+2 x-1}{(x+1)^{2}}
$$

3. Find the derivatives of the following functions:
a) $f(x)=(\tan (2 x)+1)^{2}$

Answer. $f^{\prime}(x)=4(\tan (2 x)+1)\left(\sec ^{2}(2 x)\right)$.
b) $g(x)=\left(2 x^{2}+1\right)^{-1}$

Answer. $g^{\prime}(x)=-\left(2 x^{2}+1\right)^{-2}(4 x)=\frac{-4 x}{\left(2 x^{2}+1\right)^{2}}$.
4. Find the equation of the line tangent to the curve $y=\left(x^{2}+1\right)^{2}$ at $(2,25)$.

Answer. Take differentials: $d y=2\left(x^{2}+1\right)(2 x) d x$. Now, evaluate at $x=2$ and replace $d y, d x$ by $y-25, x-2$:

$$
y-25=2(5)(4)(x-2) \quad \text { leading to } \quad y=40 x-55
$$

5. An object moves in a straight line so that its position at time t is given by $x(t)=t \cos t$. What is the velocity of the object when $t=3 \pi / 4$?

Answer. Differentiating the velocity is $v=d x / d t=\cos t+t \sin t$. Now evaluate at $t=3 \pi / 4$. The corresponding point is in the second quadrant, so

$$
\cos (3 \pi / 4)=-\sqrt{2} / 2, \sin (3 \pi / 4)=\sqrt{2} / 2
$$

so

$$
v=-\frac{\sqrt{2}}{2}+\frac{3 \pi}{4} \frac{\sqrt{2}}{2}=\frac{\sqrt{2}}{2}\left(\frac{3 \pi}{4}-1\right)
$$

