Calculus I Exam 1, Spring 2003, Answers

1. Find the equation of the line which goes through the point (3,-2) and is parallel to the line given by the equation 2x - 3y = 1.

Answer. Writing the equation of the given line as y = (2/3)x - (1/3), we see it has slope m = 2/3. Thus, the line we seek goes through (3,-2) and has slope 2/3, so has the equation

$$\frac{y+2}{x-3} = \frac{2}{3}$$
 or $y = \frac{2}{3}x - 4$.

2. Find the derivatives of the following functions:

a) $f(x) = 3x^4 - 8x^2 + x$

Answer. $f'(x) = 3(4x^3) - 8(2x) + 1$, or $f'(x) = 12x^3 - 16x + 1$.

b) $g(x) = (x+1)(\frac{1}{x}+1)$

Answer. First write the function in exponential notation: $g(x) = (x + 1)(x^{-1} + 1)$ and now use the product rule:

$$g'(x) = (1)(x^{-1}+1) + (x+1)(-x^{-2}) = 1 - x^{-2}$$
.

c) $h(x) = \frac{x^2 + 1}{x + 1}$

Answer. Use the quotient rule:

$$h'(x) = \frac{(x+1)(2x) - (x^2+1)}{(x+1)^2} = \frac{x^2 + 2x - 1}{(x+1)^2}$$

3. Find the derivatives of the following functions:

a) $f(x) = (\tan(2x) + 1)^2$

Answer. $f'(x) = 4(\tan(2x) + 1)(\sec^2(2x))$.

b) $g(x) = (2x^2 + 1)^{-1}$

Answer.
$$g'(x) = -(2x^2+1)^{-2}(4x) = \frac{-4x}{(2x^2+1)^2}$$
.

4. Find the equation of the line tangent to the curve $y = (x^2 + 1)^2$ at (2,25).

Answer. Take differentials: $dy = 2(x^2 + 1)(2x)dx$. Now, evaluate at x = 2 and replace dy, dx by y - 25, x - 2:

$$y - 25 = 2(5)(4)(x - 2)$$
 leading to $y = 40x - 55$.

5. An object moves in a straight line so that its position at time *t* is given by $x(t) = t \cos t$. What is the velocity of the object when $t = 3\pi/4$?

Answer. Differentiating the velocity is $v = dx/dt = \cos t + t \sin t$. Now evaluate at $t = 3\pi/4$. The corresponding point is in the second quadrant, so

$$\cos(3\pi/4) = -\sqrt{2}/2$$
, $\sin(3\pi/4) = \sqrt{2}/2$,

so

$$v = -\frac{\sqrt{2}}{2} + \frac{3\pi}{4}\frac{\sqrt{2}}{2} = \frac{\sqrt{2}}{2}(\frac{3\pi}{4} - 1)$$
.