DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Ph.D. Preliminary Examination: Applied Complex Variables and Asymptotic Methods Spring 2024

This exam is closed book, closed notes, and no calculators are allowed. There is a formula sheet appended to this exam that you may use to complete the problems. You have two hours to complete this exam.

There are 5 problems below. You must complete 3 of them. Each problem is worth 20 points. Clearly indicate which 3 problems you wish to be graded; otherwise, the first 3 problems with work shown will be graded.

- A score of 52 (out of 60) is a *high pass*.
- A score of 48 (out of 60) is a *pass*.
- **1.** Complete the following:
 - (a) (8 pts) Suppose that f is analytic in some domain with purely real values. Show that f is the constant function.
 - (b) (12 pts) Consider two entire functions with no zeros and having a ratio equal to unity at infinity. Use Liouville's Theorem to show that they are in fact the same function. Justify all your steps, including satisfying the assumptions of Liouville's theorem.
- **2.** (a) (10 pts) Compute the Laurent series expansion about the point z = 0 for,

$$f(z) = rac{i+2}{(z+i)(z-2)},$$

in the region 1 < |z| < 2.

(b) (10 pts) Discuss the type of singularity (removable, pole and order, essential, branch, cluster). If the type is a pole give the strength of the pole, and give the nature (isolated or not). Include the point at infinity.

$$f(z) = \frac{e^{2z} - 1}{z}$$

- **3.** Let f be an entire function, with $|f(z)| \leq C|z|^2$ for all z, where C is a constant. Show that $f(z) = az^2 + bz$ for some constants a, b.
- 4. Show that,

$$\int_0^\infty \frac{\cos 3x}{(x^2+1)^2} dx = \frac{\pi}{e^3}$$

Clearly indicate the contour of integration and the treatment of the integral along each segment.

5. Compute the complete asymptotic expansion in powers of k of,

$$I(k) = \int_0^\infty e^{-kt^2} \frac{\sin(t^4)}{t^{7/2}} \mathrm{d}t, \quad k \to \infty$$

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF UTAH Ph.D. Preliminary Examination: Applied Complex Variables and Asymptotic Methods Formula sheet

The Euler Gamma function for real inputs is defined as,

$$\Gamma(x) \coloneqq \int_0^\infty t^{x-1} e^{-t} \mathrm{d}t, \qquad x > 0.$$

In what follows, C_R denotes a semicircular arc of radius R in the upper half-plane centered at the origin. The contour C_{ϵ} is a circular arc of radius ϵ centered around a point z_0 that sweeps out an angle of ϕ .

1. Suppose f is analytic on an open domain containing a simple closed loop C. Then for all integers $n \ge 0$ and all z enclosed by C,

$$f^{(n)}(z) = \frac{n!}{2\pi i} \oint_C \frac{f(w)}{(w-z)^{n+1}} \mathrm{d}w,$$

2. The coefficients for a Laurent series of the function f are given by,

$$c_n = \frac{1}{2\pi i} \oint_C \frac{f(w)}{(w-z)^{n+1}} \mathrm{d}w$$

3. If a continuous f is bounded over a contour C of finite length, i.e., $|f(z)| \le M < \infty$ for all $z \in C$ and $\int_C |dz| = L < \infty$, then

$$\left| \int_{C} f(z) \mathrm{d}z \right| \le ML$$

4. Suppose f(z) = P(z)/Q(z) is a rational function with deg $Q \ge \deg P + 2$. Then,

$$\lim_{R \to \infty} \int_{C_R} f(z) \mathrm{d}z = 0.$$

5. (Jordan's Lemma) Suppose that $f(z) \to 0$ uniformly for $z \in C_R$ as $R \to \infty$. Then for any k > 0,

$$\lim_{R \to \infty} \int_{C_R} e^{ikz} f(z) \mathrm{d}z = 0.$$

6. Suppose that $(z - z_0)f(z) \to 0$ uniformly for $z \in C_{\epsilon}$ as $\epsilon \to 0$. Then,

$$\lim_{\epsilon \to 0} \int_{C_{\epsilon}} f(z) \mathrm{d}z = 0.$$

7. Suppose that f has a simple pole at $z = z_0$. Then

$$\lim_{\epsilon \to 0} \int_{C_{\epsilon}} f(z) \mathrm{d}z = i\phi \mathrm{Res}(f; z_0).$$

8. With C_R any origin-centered circular arc (not necessarily in the upper half-plane), if $zf(z) \to 0$ uniformly on C_R as $R \to 0$, then,

$$\lim_{R \to \infty} \int_{C_R} f(z) \mathrm{d}z = 0.$$

Laplace-type integrals

These are formulas regarding asymptotic $(k \to \infty)$ behavior of $I(k) \coloneqq \int_a^b f(t) e^{-k\phi(t)} dt$ for a < b.

(1) (Watson's Lemma) Set a = 0 and $\phi(t) = t$. Assume f is integrable with the series expansion,

$$f(t) \sim t^{\alpha} \sum_{n=0}^{\infty} a_n t^{\beta n} \quad t \to 0^+, \quad \alpha > -1, \quad \beta > 0.$$

In addition, if $b < \infty$ then assume $|f(t)| \le M < \infty$ for $t \in [a, b]$, and if $b = \infty$ then assume $f(t) = \mathcal{O}(e^{ct})$ as $t \to \infty$ for some $c \in \mathbb{R}$. Then,

$$I(k) \sim \sum_{n=0}^{\infty} a_n \frac{\Gamma(\alpha + \beta n + 1)}{k^{\alpha + \beta n + 1}}.$$

(2) (Laplace's Method) Assume $b < \infty$, and that $\phi \in C^4([a, b])$ and $f \in C^2([a, b])$. Suppose that for some $c \in [a, b]$, we have $\phi'(c) = 0$ and $\phi''(c) > 0$. Also, assume that $\phi'(t) \neq 0$ for all $t \in [a, b] \setminus \{c\}$. Then,

$$I(k) \sim G(c)e^{-k\phi(c)}f(c)\sqrt{\frac{2\pi}{k\phi''(c)}} + \mathcal{O}\left(\frac{e^{-k\phi(c)}}{k^{G(c)+1/2}}\right), \qquad G(c) \coloneqq \left\{\begin{array}{ll} 1, & c \in (a,b)\\ \frac{1}{2}, & \text{otherwise} \end{array}\right.$$

Fourier-type integrals

These are formulas regarding asymptotic $(k \to \infty)$ behavior of $I(k) \coloneqq \int_a^b f(t) e^{ik\phi(t)} dt$ for a < b.

(1) Set a = 0, and $\phi(t) = \mu t$, where $\mu = \pm 1$, and k > 0. Suppose f vanishes infinitely smoothly at t = b, that $f \in C^{\infty}((0, b])$, and that for some $\gamma > -1$, $f(t) \sim t^{\gamma} + o(t^{\gamma})$ as $t \to 0^+$. Then,

$$I(k) = \left(\frac{1}{k}\right)^{\gamma+1} \Gamma(\gamma+1) e^{i\frac{\pi}{2}\mu(\gamma+1)} + o(k^{-(\gamma+1)}).$$

(2) (Stationary phase) Suppose $c \in (a, b)$ is the only value of t where $\phi'(t)$ vanishes. Assume that f vanishes infinitely smoothly at both t = a and t = b, and that both f and ϕ are C^{∞} on the intervals [a, c) and (c, b]. Suppose that there is some $\gamma > -1$ such that as $t \to c$,

$$\phi(t) - \phi(c) \sim \alpha(t-c)^2 + o((t-c)^2),$$

$$f(t) \sim \beta(t-c)^{\gamma} + o((t-c)^{\gamma}).$$

Then with $\mu = \operatorname{sgn} \alpha$,

$$\int_{a}^{b} f(t)e^{ik\phi(t)}\mathrm{d}t \sim e^{ik\phi(c)}\beta\Gamma\left(\frac{\gamma+1}{2}\right)e^{i\pi\frac{\gamma+1}{4}\mu}\left(\frac{1}{k|\alpha|}\right)^{\frac{\gamma+1}{2}} + o\left(k^{-\frac{\gamma+1}{2}}\right).$$