UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Algebraic Topology May 25, 2023

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points.

1. Prove that if X and Y are path connected spaces then

$$\pi_1(X \times Y, (x_0, y_0)) \cong \pi_1(X, x_0) \times \pi_1(Y, y_0).$$

- 2. Let Σ_2 be the closed, orientable genus two surface. Show that $\pi_1(\Sigma_2, x)$ has a normal subgroup G with the quotient group $\pi_1(\Sigma_2)/G$ isomorphic to \mathbb{Z} . You can use a picture as part of your proof.
- 3. Let Δ^n be the *n*-simplex with its usual Δ -complex structure. Find all subcomplexes X of Δ^n such that $\tilde{H}_{n-1}(X)$ is non-zero.
- 4. Let $X = S^1 \times [0, 1]$ and $\partial X = S^1 \times \{0, 1\}$. Calculate $H_i(X, \partial X)$ for all *i*.
- 5. (a) Construct a single chain complex C such that C has the following three properties:
 - $H_i(C)$ is non-zero if and only i = 1.
 - There is a coefficient group G_0 such that $\tilde{H}^i(C;G_0) = 0$ for all *i*.
 - There is a coefficient group G_1 such that $\tilde{H}^i(C;G_1)$ is nonzero if and only if i = 1, 2.
 - (b) Find a topological space X such that $H_i(C) = \tilde{H}_i(X)$ for all *i*.
- 6. Show that $S^2 \vee S^4$ is not homotopy equivalent to a compact manifold without boundary.