UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Real Analysis January, 2024.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points. Carefully state any theorems you use.

Let λ denote Lebesgue measure on \mathbb{R} .

1. Let X be a set and μ^* be an outer measure on X. A set $A \subset X$ is called μ^* -measurable if for every $S \subset X$ we have

$$\mu^*(S) = \mu^*(S \cap A) + \mu^*(S \setminus A).$$

Show that μ^* is countably additive on the μ^* measurable sets.

- 2. Prove that there exists $\phi: \ell^2(\mathbb{N}) \to \mathbb{R}$ that is linear and not continuous.
- 3. Show that the set of real numbers that have infinitely many 2s in their base 10 expansion is a Borel set.
- 4. Prove that if $A : \ell^2(\mathbb{N}) \to \ell^2(\mathbb{N})$ is continuous and linear and AB(0,1) is dense in B(0,1) then A is surjective. Note that this is true for Banach spaces as well (though we are not asking you to prove it).
- 5. We say $f_1, ...$ is λ -Cauchy if for every $\epsilon > 0$ there exists N so that for i, j > N we have

$$\lambda(\{x: |f_i(x) - f_j(x)| > \epsilon\}) < \epsilon.$$

Show that if $f_1, \ldots \in L^1(\lambda)$ is λ -Cauchy then there exists $g \in L^1(\lambda)$ so that f_1, f_2, \ldots converges in measure to g.

- 6. Let (X, \mathcal{M}) be a measurable space and μ and ν be two finite measures on (X, \mathcal{M}) . Show that the following are equivalent
 - $\nu \ll \mu$
 - Whenever $A_1, \ldots \in \mathcal{M}$ satisfy $\lim_{n \to \infty} \mu(A_n) = 0$ we have $\lim_{n \to \infty} \nu(A_n) = 0$.