UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Differentiable Manifolds August 2024.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points. Carefully state any theorems you use.

1. For which a > 0 do the surfaces

$$M=\{x^2+y^2-z^2=1\}\subset \mathbb{R}^3 \text{ and } N=\{x^2+y^2+z^2=a\}\subset \mathbb{R}^3$$

have nonempty transverse intersection?

- 2. We will identify the set of all real $n \times n$ matrices with \mathbb{R}^{n^2} as usual. Show that $O(n) = \{M \mid M \text{ is an orthogonal } n \times n \text{ matrix}\}$ is a submanifold of \mathbb{R}^{n^2} .
- 3. Let $\omega = dx \wedge dy$ be the 2-form on \mathbb{R}^3 . Let $h : \mathbb{R}^3 \to \mathbb{R}$ be smooth so that 0 is a regular value. Let $Z = h^{-1}(0)$. Assume that $\frac{\partial h}{\partial z} \neq 0$ at all points of Z. Show that the restriction of ω to Z is a volume form on Z.
- 4. Let $V, W : \mathbb{R}^4 \to \mathbb{R}^4$ be vector fields on \mathbb{R}^4 defined by

$$V(x, y, z, w) = (y, -x, w, -z)$$

and

$$W(x, y, z, w) = (w, z, -y, -x)$$

Is there a nonempty surface $S \subset \mathbb{R}^4$ such that for every $p \in S$ both V(p) and W(p) are tangent to S? Find such a surface or show it does not exist.

- 5. Let ω be a compactly supported *n*-form on \mathbb{R}^n , $n \ge 1$. Show that the following statements are equivalent:
 - (a) $\int_{\mathbb{R}^n} \omega = 0.$
 - (b) There exists a compactly supported (n-1)-form η on \mathbb{R}^n such that $\omega = d\eta$.

You are allowed to use computations of de Rham cohomology of Euclidean spaces and spheres but not of the compactly supported cohomology of \mathbb{R}^n .

6. Let M be a connected smooth manifold. Show that for all $p, q \in M$ there is a diffeomorphism $f: M \to M$ such that f(p) = q.