University of Utah, Department of Mathematics August 2023, Algebra I Qualifying Exam

There are five problems on the exam. You may attempt as many problems as you wish; three correct solutions count as a high pass. 2 correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

- 1. Let *k* be the field with 2 elements. Identify all the maximal ideals in the ring $R = k[x,y]/(xy,x^2+y+1)$
- 2. Suppose *R* is a commutative ring with 1 and $x, y \in R$ satisfy xy = 0 and (x, y) = R (i.e. the ideal generated by *x* and *y* is the whole ring). Prove that the *R*-module homomorphism

$$\psi: R \longrightarrow R/(x) \oplus R/(y)$$

sending $f \in R$ to its image in R/(x), and in R/(y), is an isomorphism.

3. Suppose $R = \mathbb{Q}[x, y]$ is a polynomial ring. Compute the \mathbb{Q} -vector space dimension of

$$\operatorname{Tor}_{1}^{R}\left(\operatorname{Ext}_{R}^{1}\left(R/(x^{2}), R/(y^{2})\right), R/(y)\right)$$

- 4. If some power of a linear map A : Cⁿ → Cⁿ is the identity (i.e. A has finite order), show that A is diagonalizable, i.e. there is a change of basis matrix B such that BAB⁻¹ is diagonal.
- 5. Find four non-isomorphic \mathbb{Z} -modules (i.e. abelian groups) *M* that each fit into an exact sequence of the form:

$$0 \to \mathbb{Z} \to M \to \mathbb{Z}/6\mathbb{Z} \to 0$$