UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS

Ph.D. Preliminary Examination for Math 6410 Ordinary Differential Equations

```
August 19, 2022.
```


Do four problems for full credit

1. Let $f : [0, \infty) \times \mathbf{R}^d \to \mathbf{R}^d$ be a continuous function and $x_0 \in \mathbf{R}^d$ and $L \in \mathbf{R}$ be such that

$$
|f(t, x) - f(t, y)| \le L|x - y| \quad \text{for all } x, y \in \mathbb{R}^n \text{ and all } t \in \mathbb{R}.
$$

Show that there is $T > 0$ such that the Picard iterates converge to a continuously differentiable solution of the initial value problem

$$
\dot{x} = f(t, x)
$$

$$
x(0) = x_0
$$

on $[0, T]$. [Don't just quote a result. State the theorem and give as complete and detailed a proof as you can.]

2. (a) Let $f : [0, \infty) \times \mathbf{R}^d \to \mathbf{R}^d$ be a continuously differentiable function and $x_0 \in \mathbf{R}^d$ be such that $f(t, x_0) = 0$ for all $t \geq 0$. Define: the constant solution $x(t) = x_0$ on $t \geq 0$ is a stable (Liapunov stable) solution of

$$
\dot{x} = f(t, x).
$$

(b) Determine whether the zero solution $z(t) = 0$ is stable for

$$
\begin{bmatrix} \dot{x} \\ \dot{y} \end{bmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & h(t) \end{pmatrix} \begin{bmatrix} x \\ y \end{bmatrix}
$$

where

$$
h(t) = \frac{\cos t + \sin t}{2 + \sin t - \cos t}.
$$

[Hint: the general solution is

$$
\begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} ae^t - b(2 + \sin t) \\ b(2 + \sin t - \cos t) \end{bmatrix}
$$

where a and b are constants.]

- 3. Let A be a real matrix such that $\Re e \lambda < 0$ for all eigenvalues of A .
	- (a) Show that there is $\delta > 0$ such that if $|x_0| \leq \delta$, then the initial value problem

$$
\begin{aligned}\n\dot{x} &= Ax + e^{-t}|x|x\\
x(0) &= x_0\n\end{aligned} \tag{1}
$$

has a bounded solution on $[0, \infty)$. [Provide the complete proof. Do not just quote a theorem.]

- (b) Is the zero solution of (1) asymptotically stable? Explain. [Hint: let $f(t)$, $\varphi(t)$ be nonnegative continuous functions on the interval $J = (\alpha, \beta)$ containing t_0 . Let $c_0 \geq 0$. Gronwall's Lemma says that if $f(t) \leq c_0 +$ $\int_{t_0}^t \varphi(s) f(s) ds$ for all $t \in J$ then $f(t) \le c_0 \exp$ $\int_{t_0}^t \varphi(s) ds$ for all $t \in J$.]
- 4. Describe the bifurcations that occur in the equation as the parameter $a \in \mathbb{R}$ increases.

$$
\ddot{x} + (x^2 + \dot{x}^2 - a)\dot{x} + x = 0
$$

- 5. Let $f(x) \in C^1(\mathbf{R}^n, \mathbf{R}^n)$ have a non-constant, $T > 0$ periodic trajectory $\gamma(t)$ satisfying $\dot{\gamma}(t) = f(\gamma(t)).$
	- (a) [1] Define: the periodic solution $\gamma(t)$ is *orbitally stable.*
	- (b) [2] Define: the *Poincaré Map* for the orbit γ .
	- (c) [17] $\gamma(t) = (2 \cos 2t, \sin 2t)$ is a periodic solution to

$$
\begin{cases} \n\dot{x} = -4y + x \left(1 - \frac{x^2}{4} - y^2 \right), \\
\dot{y} = x + y \left(1 - \frac{x^2}{4} - y^2 \right). \n\end{cases}
$$

Determine the orbital stability of $\gamma(t)$ by computing the derivative of its Poincaré Map.

6. Find the stable/center/unstable manifolds of the system

$$
\dot{x} = -xy
$$

$$
\dot{y} = -y + x^2 - 2y^2.
$$