University of Utah, Department of Mathematics August 2022, Algebra #1 (6310) Qualifying Exam

There are five problems on the exam. You may attempt as many problems as you wish; three correct solutions count as a high pass. 2 correct solutions count as a pass. Show all your work, and provide reasonable justification for your answers.

- 1. Find every prime ideal Q of $R = \mathbb{Z}[x]/(x^3 3x, 4 + x)$ and count the number of elements in each quotient ring R/Q.
- 2. Let $k = \mathbb{Z}/2\mathbb{Z}$ be the field with two elements and let R = k[x]. Let *M* be the cokernel of the mapping from R^3 to R^3 given by the matrix

$\int x^2$	x^2	0
x^2	$x^2 + x$	x+1
0	0	x+1

How many elements are in $\text{Hom}_R(k[x]/(x), M)$?

- 3. Let $R = \mathbb{R}[x, y]$, let I = (x, y) be the ideal generated by x and y and let M = R/I. Compute dim_R Tor^R_i(I,M) for all *i*.
- 4. Suppose that *R* is a commutative ring and $0 \longrightarrow M \xrightarrow{\alpha} N \xrightarrow{\beta} P \longrightarrow 0$ is a short exact sequence of *R*-modules and *L* is an *R*-module. Prove, via an explicit argument involving module homomorphisms (and without citing properties of the Hom functor), that there is an exact sequence of Abelian groups:

$$0 \longrightarrow \operatorname{Hom}_{R}(P,L) \xrightarrow{\overline{\beta}} \operatorname{Hom}_{R}(N,L) \xrightarrow{\overline{\alpha}} \operatorname{Hom}_{R}(M,L)$$

You must concretely explain how to induce the maps $\overline{\alpha}$ and $\overline{\beta}$ from α and β respectively.

5. Let *k* be the field with 2 elements and let R = k[x]. Identify, up to isomorphism, all *R*-modules *M* with 8 elements (that is |M| = 8) and such that $M \otimes_R (R/(x^2(x+1)))$ also has 8 elements.