UNIVERSITY OF UTAH DEPARTMENT OF MATHEMATICS Ph.D. Preliminary Examination in Real Analysis August 17, 2022.

Instructions. Answer as many questions as you can. Each question is worth 10 points. For a high pass you need to solve *completely* at least three problems and score at least 30 points. For a pass you need to solve *completely* at least two problems and score at least 25 points. Carefully state any theorems you use.

- 1. Let (X, \mathcal{M}, μ) be a measure space and $f: X \to Y$ be a function.
 - (a) Show that $\mathcal{N} = \{f^{-1}A : A \in \mathcal{M}\}$ is a σ -algebra.
 - (b) Let $\nu(B) = \mu(f(B))$ for $B \in \mathcal{N}$. Show that ν is a measure.
 - (c) Show that even if (X, \mathcal{M}, μ) is complete we do not necessarily have that (Y, \mathcal{N}, ν) is complete.
- 2. Define the weak topology on $L^2(\mathbb{R}, \lambda)$ and prove that it is not metrizable.
- 3. Let $f : [0,1] \to [0,\infty]$ be measurable. Show that $U(f) = \{(x,y) : 0 \le y \le f(x)\}$ is measurable and $\int f d\lambda = \lambda^2(U(f))$.
- 4. State the Lebesgue dominated convergence theorem. Show that the converse is not true. That is, there is a sequence of functions that satisfy the conclusion of the Lebesgue dominated convergence theorem but not its assumption.
- 5. Let (X, \mathcal{T}) be a topological space and \mathcal{B} be its Borel σ -algebra. Show that if (X, \mathcal{B}, μ) is a σ -finite measure space that is outer regular on finite measure, measurable subsets, then it is automatically outer regular on all measurable subsets.

Recall that μ is called outer regular on a collection of subsets S if for every $A \in S$ and $\epsilon > 0$ there is an open set U so that $A \subset U$ and $\mu(U \setminus A) < \epsilon$.

6. State the open mapping theorem for Banach spaces and use it to prove the following: Let $(\mathcal{B}, \|\cdot\|_{\mathcal{B}})$ and $(\mathcal{C}, \|\cdot\|_{\mathcal{C}})$ be Banach spaces and $A : \mathcal{B} \to \mathcal{C}$ be continuous and linear. If A is a bijection then A^{-1} is continuous.