The value of each question is 20 points. You need to collect 80-90 points for a pass and 91 and above for a high pass. You can try as many problems as you wish.

- (1) Let $\rho(\mathbf{x}) = \sum_{i=1}^{n} |x_i|$ be the L^1 norm of $\mathbf{x} = (x_1, x_2, \dots, x_n)^{\top}$. Show that the L^1 norm is not induced by an inner product. (20 points)
- (2) Let **A** be a nonsingular $n \times n$ matrix and $\mathbf{a} \in \mathbb{R}^n$. Find the necessary and sufficient condition that $(\mathbf{A} + \mathbf{a}\mathbf{a}^{\top})^{-1}$ exists. (20 points) $(\cdot^{\top}$ denotes the transpose of matrices).
- (3) Let X₁ and X₂ be jointly normal, with EX₁ = EX₂ = 0, var(X₁) = σ₁², var(X₂) = σ₂². The correlation between them is ρ.
 (i) Find E(2X₁ + X₂)². (5 points)
 (ii) Find E(X₁²X₂²) (5 points)
 (iii) Find E(X₁⁴(2X₁ + X₂)²) (10 points)
- (4) We consider the usual linear model y_i = x_i^Tβ + ε_i, 1 ≤ i ≤ n. Let ŷ_i, 1 ≤ i ≤ n and ê_i, 1 ≤ i ≤ n be the fitted values and the residuals. Assume that the errors are iid normal with mean 0 and variance σ².
 (i) Compute the joint distribution of the vector of the fitted values (ŷ₁,...,ŷ_n)^T. (10 points)
 (ii) Compute the joint distribution of the vector of the residuals (ê₁,...,ê_n)^T. (10 points)
- (5) We consider the model

 $\mathbf{Y} = \mathbf{X}\boldsymbol{\beta} + \boldsymbol{\mathcal{E}},$

the coordinates of \mathcal{E} are independent identically distributed normal with zero mean and variance σ^2 , **X** has full rank, $\mathbf{Y} \in \mathbb{R}^n, \boldsymbol{\beta} \in \mathbb{R}^p$. We wish to test the null hypothesis

$$\mathbf{A}\boldsymbol{\beta} = \mathbf{c},$$

A is $q \times p$ with rank $q, \mathbf{c} \in \mathbb{R}^q$. Let $\hat{\boldsymbol{\lambda}}_H$ be the estimator for the Lagrange multiplier. (i) Compute the distribution of $\hat{\boldsymbol{\lambda}}_H$ under the null hypothesis. (10 points)

(ii) Find a matrix **W** such that

$$\frac{\hat{\boldsymbol{\lambda}}_{H}^{\top}\mathbf{W}\hat{\boldsymbol{\lambda}}_{H}}{S^{2}}$$

has an F distribution, where

$$S^2 = \frac{1}{n-p} \|\mathbf{Y} - \mathbf{X}\hat{\boldsymbol{\beta}}\|^2$$

is the estimator for σ^2 , $\hat{\boldsymbol{\beta}}$ is the least square estimator. (10 points)

(6) We consider the simple linear regression

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad 1 \le i \le n.$$

We estimate $(\beta_0, \beta_1)^{\top}$ with the least squares $(\hat{\beta}_0, \hat{\beta}_1)^{\top}$. (i) Find the necessary and sufficient condition that $\hat{\beta}_0$ and $\hat{\beta}_1$ are independent. (2 points)

(ii) We wish to test $\beta_0 = \beta_0^*$ and $\beta_1 = \beta_1^*$, where β_0^* and β_1^* are given numbers. We only want to reject if BOTH assumptions are violated, i.e. $\beta_0 \neq \beta_0^*$ AND $\beta_1 \neq \beta_1^*$. Find a test where you can explicitly compute the critical values (you might want to use part (i) of this question). (18 points)