2005 PH.D PRELIM
UU-MATH
DIFFERENTIAL EQUATIONS

INSTRUCTIONS

This examination consists of two parts which are problems from ordinary dif-
ferentialk equations and partial differential equations, respectively. The examinee
should should attempt work on 75% of the problems from each part. All problems
are weighted equally and a passing score shall be 70%. Good Luck!

1. OrDINARY DIFFERENTIAL EQUATIONS
1.1. Problem. (a) Let D be an open set in R x RY and let
f:D—RY

be a continuous function such that f{¢, x) satisfies a local Lipschitz condition with
respect to the o variable. Consider the intial value problem

-TI == f(fa gr;), .E(f@) == 0, (f[;,.’ﬂg) €D

State what is known about the existence and continuability of solutions of this
problem. Be particularly detailed about the hehavior of solutions as the time
variable approaches the endpoints of existence intervals.

(b)Apply the above results by sketching the solution picture for the scalar dif-

ferential equation
1

=

(Ie. find D and then consider typical cases.)

!
X

1.2. Problem. Consider the nonlinear system

' = 2s&ny

¥ = 3sinz-—siny.

Provide a complete phase plane analysis of this systern and give justifications for
YOUTr reasoning,

1.3. Problem. Let 4 bean & x N matrix, none of whose eigerrvalues have zerc real
part. Show that if b: (—o0, 00} — KV is a continuous function which is periodic of
period 1, (b(t ++ 1) == b(t}, ¢t € R}, then the equation

' = Az + b{),

has a unique periodic solution of period 1.
1
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1.4. Problem. In an isolated region of the Canadian Northwest Territories, a pop-
ulation of white wolves, x, and one of silver foxes, ¥, compete for survival (for each
population one unit represents 100 individuals). They have a common, limited
food supply, which consists mainly of mice. A mathematical biologist models the
dynamics of the competing species by the nonlinear system

¥ = z-z?—mzy
v o= dy—yt-gay

Clan the two species survive together according to this model?
2. PARTIAL DIFFERENTIAL EQUATIONS

9.1. Problem. Let © be an open subset of B,
(1) Define what is meant by a distribution on Q.
(2) Show that all functions in L}, (), are, by an appropriate identification,
distributions.
(3) Give an example of a distribution which is not of this type.
(4) Give the derivative formula for differentiating distributions.
(5) Give a definition of the L? Soholev spaces H™({)) and H{*{$}. (Other

7L

notations used are the L2 Sobolev spaces W™ 2(€2) and W% (Q).)

2.2, Problem. State and proof Poincaré’s inequality for H(Q) and use it to obtain
two equivalent inner products for this space.

2.3, Problem. State the Lax-Milgram theorem and give a brief sketch of a proof.
Use it to establish the existence and uniqueness of solutions (in the sense of distri-
hutions) of the boundary value problem

~Ay = h, inf)
u = 0, ondf,
where h € L*()). Also, in your discussion, tell, in what sense the boundary data
are assumed.
2.4, Problem. State the Phillips version of the Hille-Yosida theorem and illustrate
it by a discussion of the heat equation
u, — Au = h{t, z).



DEPARTMENT OF MATHEMATICS

University of Utah

Ph.D. PRELIMINARY EXAMINATION IN DIFFERENTIAL EQUATIONS
Winter 2005

Insiructions: The examination has two parts. You are to work a total of seven
problems from part A and part B. At least three of these problems must be
from part A, and at Jeast three must be from part B. Clearly indicate which
problems you wish to be graded.

To receive maximum credit, solutions must be clearly, carefuily, and con-
cisely presented and should contain an appropriate level of detali. Each prob-
lem is worth 20 points. A passing score is 84.

A. Ordinary Differential Equations

A1l. Contraction Mapping Theorem. Show that the problem

f

[EA A

i

) e I
{8y = flz{i) + = / z{s)ds, t&(0,a)
T 0

3
(0) = 0,

admits a unique solution = € C([0,a},R") for a > 0 sufficiently small.
Assume [ : R" — R” satisfies | f{x) — f{y)] < M|z —y] for all z,y € R™,

A2. Limit Sets. Let @ {7q) be the flow of the differential equation

&= flz),
z(0) = zy
where § € C1{R"} satisfies a global Lipschitz condition, and zp € R
(a) Given a trajectory I of @;, define the w-limit set w(I').

a
(b} Prove that w{T') is closed and invariant with respect to the flow ;.

%



A3. Periodic Orbits. Consider the system

i= -yl -2 =y,

g =ux+yll—a* — ),

(a) Find the invariant manifolds for this system.

(b) Find the unique periodic orbit I' for this system.

(¢} Find the global stable manifold W?(I"} and global unstable manifoid
W™(T') with respect to the periodic orbut 1.

A4. Linear Systems. Consider the linear initial value problem

z = Az,

where 4 € R™" is constant, and zq € R" 1s given.

(a) Prove that the matrix exponential e** exists and satisfies |le®!]| <

A5,

eliAllit where || -]l is the operator norm.

(b) Prove directly that z(t) = g4tz is the unique solution to the initial
value problem above.

Floquet Theory. Consider the system
B(t) = A()a(2).

where 4 - R — R™7 is continuous and T-periodic, i.e., At +T) = A(%)
for all t € R. Let ®(¢) be the fundamental matrix solution for this
system. Assume that there exists a complex-valued matrix B such that
el = @(T).

(a) Explain in detail how solutions z{¢} to the periodic system above are
related to solutions y(} of the constant-coefficient problem y = By,
and prove vour assertions.

(b) Explain what the eigenvalues of A(t) or I3 have to do with stability
of the solutions z(t).



A6. Dependence on Initial Conditions. Consider the scalar initial value

problem
v =y -y
{0} = a,
y'(0) = b.

Denote the dependence of y(£) on its initial conditions by y(; a, b}. With-
h 1

out explicitly solving for y(#; 4, b}, find w-i(t 0,0} and 5;(7: 0,0), then
. » -

write down a first-order approximation for y(f; e, b) which is valid for
small |al, [b].

B. Partial Differential Equations.

B1. Variational Principles. Let 2 € R" be a bounded domain with
smooth boundary 082 and unit outward normal 7. Consider the problem

FANTIESN S 1—=2 in {2,
Ju
— = 0, on J¢,
o '

where f € L*(Q)) satisfies [, f = 0.

{a) Prove that for each real constant ¢ > 0, there exists a unique weak
solution u, € H'(£2).

(b) In the case ¢ = 0, find an additional condition on u which guarantees
a unique weak solution ug, such that the solutions u, from part (a)
converge to uy as € —» 07. Prove existence and uniqueness of ug
(with the extra condition}, and prove u, — uy in H*(Q) as € — 07,



B2. Heat Equation. Given the constant 7 € R, consider the initial value
problem

= GAu, xe R >0,
w(z,0) = g(z), =R

(a) Assume 3 > 0 and let g € C (R") be bounded. Prove that there
exists a bounded solution w{x,?} which is € for all £ > 0. Under

what condition are solutions unigue?

(b) Assume § < 0 and let g € C>={R") be bounded. Are solutions
w(z,t) necessarily bounded and continuous for ¢ > 07 Prove, or
provide a counterexample.

B3. Laplace Equation. Let {8 € R” be open. Suppose u € C{($2) satisties
the mean value property: for every ball B.(€) = {x e R" : jo — & < v}
with B.(£) € Q,

1

u(f) = o ]I/ - w{€ + 7z} dS,,

Prove that A =0 in £,

B4. Conservation Laws. Consider the first-order equation
(Glu)ly +uy =0,
where G € (C°°, with initial condition u(z, 0} = h{z).

(a) Using the method of characteristics, derive the general solution of
the initial value problem. Assuming h € C', find a condition on
(' (h(zx)) which implies the solution u(z, y) will develop a singularity
in finite time y > 0.

(b) Set G{u) = Lu?. Given uy € R, find explicit weak solution{s) for

ws{5 158

Show that your solutions are weak solutions. Which properties do
vour solutions exhibit: shocks, rarefaction, nonunigueness?



B5. Distributions. Let {2 C B™ be an open sef.

fay Let {f,} C C{§2), with f, converging to f € C(Q) pointwise, Le.,
fulzy = flz) for all z € 2. Does it follow that f,, converges to f
in the sense of distributions? Prove or give a counterexample.

(b) Let {u,} < D'(§2) with u, converging to p € D'(£2) in the sense
of digtributions. Let « be a fixed multi-index. Does it follow that
the derivatives @*u, converge to d%u in the sense of distributiong?
Prove or give a counterexample.

(¢) Find a sequence of L(R) functions which do not converge in L' {R)
but which do converge in the sense of distributions.

B6. Wave Equation. Let 2 C R" be a bounded domain with smooth
boundary. Censider the initial boundary value problem

wy = N, x el >0,
w(r,0) =glz), =€l

w{z,0) =0, =zl

o

£omnd)

apbme #3 — T Fa L
Uiyt L2 : 3

Show that there exists a sequence of initial conditions {g;} < CZ({2)
and a sequence of frequencies {w;} € R with w? — oo, such that each

r;

solution u{x ¢} corresponding to initial condition g; satisfies
{q b Fat
ud (z,t) = ww;fu‘v?’{:zz, t), =€, t>0.

Moreover, prove that there is af most a countable set of w for which
wy = —w u, 1o matter what initial conditions ¢ are chosen.



DEPARTMENT OF MATHEMATICS
University of Utah

Ph.D. PRELIMINARY EXAMINATION IN DIFFERENTIAL EQUATIONS
Autumn 2004

Instructions: The examination has two parts. You are to work a total of seven
problems from part A and part B. At least three of these problems must be
from part A, and at least three must be from part B. If you work more than
the required number of problems, clearly indicate which problems you

wish to be graded.
To receive maximum credit, solutions must be clearly and carefully pre-
sented and should be as detailed as possible. All problems are worth 20 points.

A passing score is 84.

A. Ordinary Differential Equations

A1l. Contraction Mapping. Consider the initial value problem

z = flz),
z(0) = zg,

where f satisfies for all z,y € R"
Flz) = fl < A+ |zl + )iz — 9l

Use the contraction mapping principle to find a condition on iy which
guarantees local existence and uniqueness of solutions. How does the
local time interval upon which existence is obtained depend on |z¢|7

A2. Global Existence. Let ¢;(zg) be the flow of the differential equation

& = f(z),
z(0) = zp

where f € C*(E), E C R" is open, and 7o € E. Prove that if the system
has a Liapunov function V with V{z) = £V (¢:(z))]i=0 < 0forallz € E,
and the set S = {z € E : V(z) < 1} is compact, then solutions ¢(zo)
with zp € S exist for all positive times ¢ > 0.



A3.

A4,

Periodic Orbits. A model of an autocatalytic chemical reaction is
given by the Brusselator system

%—‘1—:— =1 — 4z + 2y,
N ®
—= =3z ~ z%y.

dt
Show that the trapezoidal region with vertices (%,0), (13,0), (1,12),
(3,12), is an invariant set for (1). Show that the system has a noncon-
stant periodic trajectory in R2.

Linear Systems. Suppose A is a real n X n matrix whose eigenvalues A;
satisfy Re); < 0. Show that there are constants € <ooand £ <n —1
so that any solution x(¢) € R™ of the initial value problem

dx
X _ 4
ar

x(0) = xq,
satisfies

Ix{i)i i C {1 . Iiik} ix 1 forallt e R and Xg-& B

Ab.

A6.

H U

Linearization. Assume g € C*°(R") has a strict local minimum at the
origin. Consider the second-order system

Z+ B+ Vg{z) =0,
where z(t) € R® and B € R™™" is a symmetric positive definite matrix.
(a) Rewrite the system as a first-order system.

(b) Write the limearization of the system at the origin.
(¢) Prove that the origin is an asymptotically stable fixed point.

Stable and Unstable Manifolds. Find the stable and unstable manu-
folds in the neighborhood of the origin for the system

= -z
Y =y+z’
2 =z+ 4

How are the stable and unstable manifolds for the linearization of this
system related to those of the nonlinear system?



B. Partial Differential Equations.

B1.

B2.

Variational Principles. Suppose 2 € R" is a smooth, bounded do-
main. Show that there is an € > 0 depending on n and € such that if
f,g € C(Q) are continuous functions such that f < e then the equation

fl

Au+ f(z)u = g(z), for x € 12,
u(z) =0, for z € 052

has a weak solution u € H(2).

Heat Equation. Let (? C R" bea bounded domain with smooth bound-
ary 8. Let f € C*(Q2), g € C*(09), and assume f = g on 80 Let
u(z,t) solve

ut:Au, $697t>0

u(z,0) = f(z), €0
u(z,t) = g(z), z€dN >0

B3.

Prove that lime Jg [u(z, ) — v(z)[* dz = 0 where v solves

Hv =0, in 2,
v=g, ondf.

Laplace Equation. Let Q ¢ R™ be a domain. Let Qi be a bounded
subdomain with £, C .

(a.) State the Harnack Inequality for harmonic functions.

(b.) Let {u,} be a monotone increasing sequence of nonnegative har-
monic functions on §2. Suppose that for some point £ € Q, the
sequence of real numbers {uy (£)} is bounded. Prove that {u,} con-
verges uniformly on ; to a harmonic function. You may use stan-
dard theorems about convergence of sequences of harmonic func-
tions without proof.



B4. Conservation Laws. A model for flow of fluid in an infinite pipe says
that the density p(z,1) satisfies

8,0 3}? . 9 . 17 if z < 07

Ot 5, ifz>0.

(a) Find a solution p.

(b) Define what it means for your solution p from part (a) to be a weak
solution of the system. (Do not carry out the calculations to prove
that p is a weak solution.)

B5. Distributions. Suppose f(£),g(¢) € CZ(R) are compactly supported
twice continuously differentiable functions. Then

u(z,t) = flz+1) +g{z - 1) (2)
is a classical solution of the wave equation

Uy = Ugg = 0 for —oo < z,t < 0. (3)

Show that if f(£),g(¢) € Co(R) are merely compactly supported con-
tinuous functions, then (2) still defines a solution to (3) in the sense of
distributions.

B6. Wave Propagation. Consider the equation
Uy — Ugz T Au =0, z€R, >0,

where A > 0 is fixed.

(a) Explain what is meant by a dispersive solution, and find a dispersion
relation for the equation.

(b) Define an “energy” functional E(t) for this equation and show that
each solution wu(z,t) with finite initial energy conserves energy.
State conditions under which uniqueness of solutions holds.



DEPARTMENT OF MATHEMATICS
University of Utah
Ph.D. PRELIMINARY EXAMINATION IN DIFFERENTIAL EQUATIONS
Winter 2004

Instructions: The examination has two parts. You are to work four
problems from part A and four problems from part B. If
you work more than the required number of problems, then
state which problems you wish to be graded, otherwise the
first four will be graded.

In order to receive maximum credit, solutions to problems
must be clearly and carefully presented and should be as
detailed as possible. All problems are worth 20 points.
A passing score is 96.

A. Ordinary differential equations: Do four problems for full credit.

Al. Picard’s Existence Theorem.
(a.) Suppose f(z,t) € CY(R™ x R,R") and (zo,t) € R™ x R. Show that there is
an £ 0.s0.that the initial value problem

dz
E - f(mat)a
$(ﬁg) = Xg.

has a unique solution y € C!([to — €, 1o + €], R™).
(b.) Suppose that the hypothesis on f was replaced by f(z, t) € CYR" x R,R"™).
Would all or part of the conclusions in {a.) continue to hold?

A2. Constant Coefficients. Suppose that A is a real n x n matrix all of whose
eigenvalues A have strictly negative real part e A < 0. Suppose

(1.) %;P— = Az, z(0) = zg.

(a.) Show that there is a decreasing function 4(¢) > 0 such that 6(t) — Oas & — oo
and such that every solution of (1.) satisfies

lz(t)] < 8(t)|zo! as t — 00.

(b.) Define: z is Liapunov Stable. Define: z is Asymyptotically Stable. Show that
the zero solution z{t) = 0 of the autonomous system is asymptotically stable.



A3. Periodic Orbits. Show that the following translated Fitzhugh-Nagumo system
modelling a nerve axon has a nonconstant periodic trajectory in R2.

dz 5
—C_E mO.Qa:(Im:c )-—y
dy

A4. Nonhomogeneous Equations. Let vp,zo € R™ and A be an n X n real matrix
whose eigenvalues ); satisfy ReA; < —gg for all i = 1,... ,n and for some & > 0.
Show that solution of the initial value problem (2.) is bounded for £ > 0 as long as
it exists. Argue that therefore it exists for all time.

9 An + e Hz + v)

(2.) dt

A5. Periodic Coefficients. Prove that if |z| # 0 is small enough, then all solutions

are bounded
i+ [t + esin(3t)]u=0

[Convert to a system of equations. Giive a condition for the boundedness of all

solittions. Verify that the condition-is-satisfied-inr this-case:]

A6. Three Species Predator-Prey Model. Consider the following Lotka-Volterra
model for populations of three species x,y,2z = 0.

t=z(4—y—2),
g =y(l-2),
2= z{z +y—b);
2(0) =z, ¥(0) =y, =2(0)= 2.

The only stationary point for this system with all positive coordinates is at P =
(2,3,1). Show that there is an open U C R? such that (2,3} € U, a function
flz,y) € CH{U) and e > 0 so that for initial points which are e-close to P, that
is for |(zo, 0, 20) ~ P| < &, if zo = f(zo,y0) then the solution converges to P as
t — oo, but if 2o # f(zo,yo) then the solution eventually goes away from £, that

is for some to > 0, |(z(to), y(te), z{to)) — P| = €.

B. Partial Differential Equations. Do four problems to get full credit.

B1. Elliptic Equations. Suppose  C R” is a smooth bounded domain. Let a‘(z) €
C>(%1) be smooth functions. Give conditions on a*(x) so that for all f € L*(Q)



there exists a weak solution to the boundary value problem

n
Au + Zai(m)Diu = f(zx), forz el
i=1

u(z) =0, for x € 052,

=L 9 %
[Here A= ; p is the Laplacian and D; = B is the partial derivative.]

B2. Heat Equ:;tion. Let £ C R™ be a bounded smooth domain, and 0 < T < o0,
¢ € R be constants. Let ¥(z) € C§° (). Let u € C*' (2 x [0, T7]) be a solution to

u = Au+cu, if (z,t) €2 x[0,7],

ot
(3. u(z,0) = ¥(z), ifze,
u(z,t) =0, if (z,t) € 82 x [0,T].

a.) Show that the solution u(z,t) is bounded on Q x [0, T} in terms of ¢,
SUPgeq (z)| and ¢. {You may assume ¢ < 0 but it is true for any e

(b.) Show that such solutions of (3.) depends continuously on .

B3. Vibrating Plate. Let 2 C R™ be a smooth bounded domain. Let w1 € C§(8).
Suppose that there exists a solution u(z, t) € C*(£2 x [0, T} to the initial-boundary

value problem for the vibrating clamped plate equation

( Hu
éﬁ—{-AAu:O, fzeflandt > 0;
u(z,0) = p(z),
(4.) 3 Bu for z € 2.
20,00 = (@),
u(m,t):g%(a:,t)m 0, fredland 0 <t <T.

(a.) Show that the total energy

E(t) = /ﬂ {(%?»(a:,t))z + (Au(m,t})z} de

is bounded in terms of ¢, ¥ and ?.
(b.) Show that such a solution of {4) is unique.

B4. Conservation Laws. Find a solution to (5.) and prove that it is a weak sclution.

ou oy OU

—_— — = X = (L

8t+(1+u)5‘m 0, forreRandt >0
1, itz <0,

(5.)
M%@x{ | ,
0, ifz2>0.

forz e R.



1

B5. Distributions. Let k(z,y) = P log |z ~ y|, where z,y € R*.
™

(a.) Show that k(-,v) is a distribution on R? for each y € R

b.) Show that as distributions, A, k(z,y) = 6,(z) for all y € R%
A y
(6, (z) = 6{x — y} and & is the Dirac delta function.]

B6. Fundamental Elliptic Estimate. Let £2 ¢ R™ be a bounded smooth domain and
let H*{Q?) denote the Sobolev space of functions whose distributional derivatives
up to the k-th order are in L2(Q). Show that if for some constant A, u € H' (1) is

a weak solution to
Au+Au=0

then u €C®(Q). [You may assume the fundamental elliptic interior estimate: If
' cc ) is a compactly contained subdomain, then there is a finite constant

C = C(Q,Y, k,n) so that
el k200 < C (] Aullrn + ilulloe)

for all uw € H¥2(Q). Moreover, if f € H*(Q2) and u € H'(Q) is a weak solution to
Au = f, then u € H¥ (V)]




DEPARTMENT OF MATHEMATICS
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Autumn 2003

Instructions: The examination has two parts consisting of six problems
each. You are to work four problems from part A and four
problems from part B. If you work more than the required
number of problems, then state which problems you wish to
be graded, otherwise the first four will be graded.

In order to receive maximum credit, solutions to problems
must be clearly and carefully presented and should be as

detailed as possible. All problems are worth 20 points.

A passing score is 96.

A. Ordinary differential equations: Do four problems for full credit.

Al. Peano Existence Theorem. Suppose f(z,t) € C(R™ x R,R") and
(wg,t0) € R™ x R. Consider the system of ODE’s

- .
z(tg) = zq.

(a.) Find an example that shows that the solution of (&) may not be
unique. Give another example that shows that the solution may not
exist for all time.

(b.) Prove the Peano Existence theorem: Suppose f(z,t) € C(R" x R)
and (zg,%0) € R™ x R. Then there is an ¢ > 0 and a function y €
C([to, to + €], R™) which solves ().

A2. Picard’s Existence Theorem. Suppose f(z,f) € C}(R™ x R,R™) and
(z0,%0) € R® x R. Suppose that there is a continuous function m(t) € C(R)
such that [f(z, )] < m(£)(1 + |z]) for all (z,t) € R™ x R. Show that the

initial value problem

dx
a’i— - f(il’,?f),
m(tg) = Iy-

has a unique solution y € C1(R,R™) which exists for all time.



A3.

Ad.

Periodic Orbits. Show that the following system has a nonconstant peri-
odic trajectory.

dx
dt
dy
dt

= [3 ~sin (z® + %) ] v

= —3x + cos (xz + yz) y

Stability of Solutions. The following questions have to do with the sta-
bility of the zero solution z(t) = 0 to a system of ODE’s.

v = ft, ),

where f(t,z) € C®°(R x R™,R™) such that f(t,0) = 0 for all ¢.

(a.) Define: z is Liapunov Stable. Define: z is asymptotically stable.

(b.) Give an example of an ODE system such that the zero solution is
Liapunov stable but not asymptotically stable.

(c.) Let A bean nxn real matrix whose eigenvalues A; satisfy Re A; < 0 for
alli=1,...,n. Let g(x) € C*(R™ R") such that there are constants
1< B, e < oo so that |g(z)] < clz|? for all z € R™. Show that the zero
solution z(¢) is asymptotically stable in the equation

y' = Ay +sin(t)g(y).

AS5.

A6.

Periodic Coefficients. Prove that the equation
i+ (sint) @+ (1 +sin2t)u = 0
does not have a fundamental set of periodic solutions.

Two Species Competition Model. Consider the simplified competition
model for two populations z(t) > 0 and y(t) > 0,

% = z{l —z — 3y),
gy = 3y(1 ~y — 2z).

Tts equilibrium points are (0,0), (0,1), (1,0) and (.4,.2). The equilibria
(0,1) and (1, 0) are stable, but (0,0) is unstable. This system has a sepera-
trix, a curve which divides the first quadrant of the plane into two basins of
attraction corresponding to the two stable equilibria. Thus one species or
the other wins out, depending which has the starting advantage. As a first
step in showing that (.4,.2) lies on the seperatrix, prove that in an open
neighborhood @ of (.4,.2) there is a C* curve o through (.4,.2) with the
property that trajectories starting on one side of the ¢ in @, stay on that
side of ¢ while in (.



B. Partial Differential Equations. Do four problems to get full credit.

B1. Conservation Laws. Consider the first order equation

©) %—F(tanu)%m{), forzreRandt > 0.
w{z,0) = ¢(z), for z € R.
(a.) Find a solution u(z,t) to (¢) where p(z) = Arctan(z).
(b.) For
@) { 0, ifz<0,
T =
v I, iz >0,
find two weak solutions to ({). Prove that one of them is a weak
solution.

(c.) State the entropy (Rankine-Hugoniot) condition. Which wealk solution
of part (b.) satisfies this condition?

B2. Distributions. Let §2 C R™ be an open set and D’(£2) the space of distri-

butions on 2.
(a.) Let & € D'(R™) be the Dirac delta function. Fix a multiindex §. Show
that the derivative D¢ is a distribution.
(b.) Let C$°(£2) denote the space of compactly supported smooth functions

of Q,. Brieﬂ}r Cxpiaiﬁ x‘x‘rh}r there exist nonzero (’O [ ("SC(QD
(c.) Suppose p € Cg°(R™) is such that p > 0, the support is contained
in the unit ball around zero, sptp ¢ Bi(0), and fw pdr = 1. Let

n, = h™"p(x/h). Show that as distributions, n, — d as h — 0.

B3. Heat Equation. Let @ C R" be a bounded smooth domain, 0 < T < oc
be a constant, c(z) € C* (£2) such that ¢(z) < 0 for all z and P(z,t) €
C> (@1 % [0,T)). Let u € C*! (2 x [0,T7]) be a solution to

(@) { %—?:- = Au +c(z)u, if (z,t) € QX 0,71,
u(z, t) =y(z,1), if (z,1) € @ x {0} orif (z,2) € 82 x [0, 1].

(a.) Prove the Maximum Principle: If ¥{z,t) = 0 then the solution
satisfies u(z,t) > 0.
(b.) Show that such solutions of (¥) are unique.

B4. Wave Equation. Let f(x,t) € C°(R* x R) and R > 0 be fixed. Suppose
that the support of f is contained in the cylinder spt f C {(z,t) € R? x
R : |z] < Randt > 0}. Show that there exists a solution u(z,t) to the



inhomogeneous wave equation (#). Show that the solution satisfies u(z, t) =
0 whenever |z| > ¢t + R.

9*u 2 X g
WWCAM—E_]:(:B’@’ ifreR andt >0
(W) u(z,0) =0,
3
Su for z € R”.
"o :O Z07
5; (2:0)
B5. Laplace’s Equation. Let ¢(y1,2) € Co (R?) be continuous with compact
support. Let
_ I3 wly1, y2) dy1 dy2
u(;c) - "ﬁm_ 3/2°
T IR [(y1 — 21)? + (y2 — 72)° + @]
for z € RY = {(z1,72,23) € R® : ©3 > 0}, the open upper three space.
Show that u € C* (R}) N C (}R?i_) and solves the boundary value problem
for Laplace’s equation
{Au:o, if z € RY,
'L!;(.,’El,ﬂl‘g,{)) == cp(xl,:cg), if ($1,.’L'2) = Rz.
i _ w3 dy1 dy» . -l
YOu may assuliie j 3z &
{ © (g — o) + -2 422
B6. Fundamental Elliptic Estimate. Let T" = S! x --- x §! be the n-
dimensional torus. Let u € C°°(T"), which is the same as saying u is a
complex valued smooth function on R™ which is 27n-periodic in each coor-
dinate. Then for k € R, the Sobolev norm is given by
k
fulf =D (L + o) Jual?
2
where u ~ Y, uqe’™% is the Fourier series expansion of u such that the
sum runs through all multiindices o € Z*. Let H*(T™) be the || - lx-
completion of the trigonometric polynomials on T™ (finite sums of the form
p(m) = Ziﬂf-[ﬁN caeza.x')
(a.) Show that for k = 2, there is a constant c(k, n) < oo so that whenever
u € H*2(T") then
() fullisz < e(f Aullx + Jullo)-

(b.) Supposing that (1) holds for all k, prove that if f € C°°(T™) such that
Jpof dzz =0 then there is u € C°°(T") such that

Au=f on T".
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Part A
Ordinary Differential Equations
Do three (3) exercises from Part A for full credit.

Exercise A-1. Consider the initial value problem
' = f{t,z), xlto) = T

on the set X: |t —to| < a, |z — zp| < b. Below, outline the proof means a sequence
of statements and lemmas and very brief details. In the outlines, you may freely use
the staternent and details of proof from the Picard-Lindeldf existence and uniqueness
theorem, which says that there exists a unique solution z() defined on the interval
|t — to] < @ = min{a,b/m), m = max{|f{t,z)} : (t,z) € X}, provided [ satisties some
special conditions. Select with a check-mark and solve either A-1.1 or A-1.1I:

D A-1.L Let f{t,) be measurable in ¢ for each fixed z, continuous in z for fixed ¢
a.e. and for some m € L (tg—~a, tg+a), | f(t,z)] < m(t) whenerever (£,z) € X. Outline
the proof of Carathéodory’s existence theorem: There exists an absolutely continuous
function z{t) defined on an interval ¢ — to| < kb with & < a such that z'(t) = f(t, z(t))
a.e., and z{tg) = To-

D A-1.11. Assume that f is continuous on X. Outline the proof of the Peano
existence theorem: There exists for some h > 0 at least one solution z(t) defined on
the interval |f — 5| < h.




Exercise A-2. Assume that the eigenvalues of a real n x n matrix A have negative
real part. Select with a check-mark n and solve either A-2.1 or A-2.11:

| ] a2l
(a) Prove that positive constants M and « exist such that for all z € R" and £ > 0

letal < Mlalle™".

(b) Prove that the zero solution of w' = Au is asymptotically stable.

D A-2.I1. Prove that for At} continuous and T-periodic, the equation v’ = Au+h(1)
has a unique T-periodic solution u{z).




Exercise A-3. Let the system 7/ = f(z) define a C! flow ¢, on the open set F
contained in B™. Prove that the positive limit set I'" (v} of a trajectory z(t) with

z(0) = v is closed. Then, select with a check-mark and solve either A-3.I or
A-3.IL
[:] A-3.1. Consider the autonomous planar dynamical system

& =6z — 2zy — 62°, y = ~Ty+ 2oy —v°

{a) Compute the four rest points (=equilibrium or stationary points) of the system
and the linearization about each rest point.

{b) Make a table in which each row contains a rest point, the classification stable or
unstable, and the geometric classification node, spiral, center or hyperbolic point.

(c) Sketch the phase diagram showing the rest points and the local behavior of solution
curves (rough and briefl}.

l:] A-3.IL Tet 2 = 22 + 42, w = (r? — 1)(r? — 4} and consider the planar system
# = —y+aw, ¢ =z+yw (r' = rw, & = 1 in polar coordinates). Apply the Poincaré-
Bendixson theorem to prove that r = 1 and r = 2 are limit cycles (a periodic orbit «
with v = Tt (v) or v = T'""(v) for nearby v).




Exercise A-4. Select with a check—mark and solve either A-4.1 or A-4.I1:

D A-4.1: Assume f: D — R" is continuous and f is bounded by a constant m on
a subdomain D¢ C D. Let u(t) be a solution of @' = f(t,u) with (t,u(t)) € Dy on
a<t<h

(a) Prove that u(t) satisfies a Lipschitz condition |u(t1) — u{t2)] < mity — f2|-
(b) Prove that u({t} has one-sided limits at ¢ = o and ¢ = b limy e ult) and
limy_,s. u(f) exist and are finite.

(¢) Explain the connection between (b} and the extension of solutions of itial value
problems to a maximal interval of existence.

D A-4.IL: Let f : [a,B] — R* be contimuous and assume f{a)f(b) # 0. Verily the
following properties of topological degree:

(a) Tf f(b) > 0 > f(a), then d(f, (e,b)},0) = 1

(b) If f(b) < 0 < f{a), then d(f, (@, b),0) = —1

() If f(a)f{b) > 0, then d(f, (a,b),0) = 0.




Part B
Partial Differential Equations
Do three (3) problems from Part B for full credit.

Exercise B-1. Consider the Sturm-Liouville problem z?(z®u/)’ + Au = 0 on 1/2 <
x < 1 with boundary conditions u(1/2) = u{l) = 0.

(a) State without proof the main theorem on eigenfunction expansions which applies
to this example.

(b) Use the change of variables w(t) = u(1/f) to transform the differential equation into

d?w /dt? + dw = 0. Then calculate the eigenvalues A, and eigenfunctions u,, by citing
without proof a result for the Sturm-Liouville problem " + Ay = 0, y(a) = 0 = y(B).

() Sturm oscillation theory and the Priifer transformation are used in the general
theory to produce the candidate eigenvalues and eigenfunctions. Sketch briefly how
this is accomplished, without proofs.




Exercise B-2. Select with a check—mark and solve either B-2.1 or B-2.I1:

[:I B-2.1: Define the Sobolev space H™ (2} for open £2 C R™. Then
{(a) Prove that H™(Q) is a Hilbert space.

(b) Give an example of a sequence which shows that the subspace C' {[0,1]) in L(0,1)
is not complete in the L'-norm.

(¢) Compute the distributional derivatives 8f and 82 for f(z) = |z| in H?*(~00, 00).
Asgsume results for the Heaviside unit step and Delta.

|:—_] B-2.1T: Define what it means for A to be a Hilbert space. Then:

(a) Explain the meaning of the formula H = M & M 1 and give conditions on M for
when it is true (do not give proofs).

(b) State the Riesz representation theorem and use {a) to prove it.




Exercise B-3. Select with a check-mark and solve either B-3.1 or B-3.11:

D B-3.I: Let 4, h denote elements of some Sobolev space and consider the dis-
tributional differential equation —u” + « = h with Dirichlet boundary conditions
u{0) = u(1) = 0.

(a) Formulate an abstract boundary value problem a{u,v) = (h,v)}, by defining the
sequilinear form a(u,v), the Hilbert space H and the inner product (-, -).

(b) Discuss in detail how the Riesz theorem applies to solve the abstract boundary
value problem.

(¢) Is enough known about the Hilbert space solution u for it to be a solution of the
distributional differential equation? Explain,

[:[ B-3.11: Let ¢ € HE(G) and denote by | - || the usual norm in L*(G), G open in
R™ Assume |z < K forallz € G

(a) Prove the Poincaré inequality [l¢]| < 2K }{0r, 4.

(b) Explain, without proof, how to use generalizations of the Poincaré inequality to
solve the abstract boundary value problem for distributional differential equations of

the form Au = f.




Exercise B-4. Sobolev proved an imbedding inequality of the form [{f{|p < M{flla,
where A = H™(G) and B is the set of functions u such that D%u is uniformly contin-
uous on G for {e] < k. Give, without proof, the conditions on the open set G ChH
and the integers m and £,

Select with a check—mark and solve either B-4.1 or B-4.11:

E] B-4.I: Under Sobolev’s conditions on G, m and k, each f € H™(G) satisfies
89F = D% a.e. for some k-times continuously differentiable function g, lal < &,
(a) Prove this, assuming the imbedding inequality above.

(b) Determine for n = 2 the least m such that an element in H ™((F) has 4 continuous
derivatives {G as above).

D B-4.11: Regularity theory implies that certain abstract boundary value problems
alw,v) = (F,v) can be solved for u € H***(G) provided I € H*(G). Consider the
Dirichlet problem for Au=F, z € .

(a) Assume G is a disk in R?. Give without proof a smoothness condition on F for
the existence of C? solutions u.

(b} Assume @ is bounded and open m E2. Give without proof conditions on G and
AG, and a smoothness condition on I, for the existence of C? solutions u.
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Part A - ODE

Exercise 1
Consider the system of ordinary differential equations

w = —|ulfu + h(t), (1)

where )
h:f0,1] — RY

is a continnous function and |-| is the Euclidean norm in &Y. Use Brouwer’s
fixed point theorem to show that (1) has a solution u € C 110,1] such that

u{0} = u(l).
Use this result to conclude that if
bR BRY

is continuous and periodic of period 1, then (1} has a solution of period 1.
(Hint: Consider equation (1) subject to initial data g : lug| < r, where 7 is
Jarge (in relation to h) and examine solution curves by computing %[uﬁ for
solutions w.) In relation to the above, what can you say about the equation

‘U,l o iTLE‘}ﬂ. o h{t}. _— — S ——— (2) .

Exercise 2

Let A be a real N x N matrix, all of whose eigenvalues have negative real
parts. Let

h:R— RY

he a continuous function which is periodic of period T. Let

(t,v) w ult,v)
RxRY - RV

denote the unique solution of
w = Au-+ hit), u(0) =v. (3)

For given 7" > 0, define '
St : rY — rY

by
Sr{v) = u(T,v).



1. Use the variation of constants formula (and what you know about
stability theory for the linear system «’ = Au) to show that Spris a
contraction mapping, for some positive integer n, sufliciently large.

2. Show that
Spr = Spo---0S57.
Nttt !

T

the n-fold composition of S with itself.
3. Show that if S,7 bas a unique fixed point, then so does St.
4. Apply this to show that if & is a continuous periodic function of period
T, then (3) has a unique 7'—periodic solution.
Exercise 3

Let ] )
f: rRY Y

be a ' function and consider the system of differential equations

W' = f(u). (4)

Let there exist, for a given v € RY | a compact subset K of RY, such that
u(t,v) € K, tel,

where 7, is the maximal interval of existence of the solution u(t,v) of (4)
which satisfies
u{l,v) = v

Sketch proofs of the following:

1.
I, = (=00, ).
2, The w limit set T'(v) (define this term) is a nonempty, compact, con-
nected, and invariant set.

What more can you say about the set T'(v) in case of dimension N = 27
Are there similar statements in higher dimensions?



Exercise 4

Consider the system in the plane

W = v+ uw
(5)

v o=+ vw,

where
rzmuzw%vzg w=r*— 6r° + 8.

Show that (5) has precisely two nontrivial periodic orbits and provide a
“complete” phase plane analysis of the system.

Exercise 5

Use the implicit function theorem for mappings between Banach spaces to
discuss the unigue solvability of the scalar boundary value problem

u” 4 2u 4+ u? = (), u(0) = u(r), (6)

for continuous functions A of small maximum norm. Results needed from
Sturm-Liouville theory may be assumed but should be guoted.




Part B - PDE

Exercise 6

Let G &Y be an open set. Define what is meant by a distribution on G.
Also define the concept of distributional derivatives of any order «, where
o is a multiindex.

Give a definition of the Sobolev spaces H™(G), HJY (), where m 8 a
nonnegative integer. Use properties of distributions to prove the generalized
integration by parts formula

(@ f,9) = (~=1){f,0%), € H™(G).g € HY"(G), o] < m,
and {-.-) is the L*{G) inner product.

Exercise 7

Consider the space of real-valued functions H 2(0,1) and define the quadratic

form

0
where b and ¢ are positive constants. Show that o is a form to which the Lax-

1 i 1
a{u,v) = / u e de + b / wo'dr + ¢ ] uvdi,
JO 1]

Milgram theorem may be applied and state the Tesuli thus ohtained —Tet
f e L30,1), and restrict the form a to the space H3(0,1}. Show that [ may
he thought of as a continuous linear functional on £(0,1), and apply the
Lax-Milgram theorem to the pair a, f. Determine a boundary value problem
which is solved in a distributional sense by the Lax-Milgram solution and
show that this solution is at least three times continuously differentiable.

Exercise 8

Let G be a bounded open set in RY with smooth boundary. State and
indicate a proof of Poincaré’s inequality for functions u € H}(G). Using the
inequality show that

fla]|2 xf \Vul?de,
[

defines a norm equivalent to the H' norm. Consider the form

alu,v) = | Vu-Vo+ / clz) - Vuvdz, {7)
G &

where the components of the vector function ¢ belong to L>(G).

o



Provide a condition on the function ¢ in order that a is a sesquilinear
form satisfying the conditions of the Lax-Milgram theorem. Determine a
houndary value problem solved by the Lax-Milgram solution.

Exercise 9
1. Let H be a Hilbert space and let
A:D(A) - H

be a linear operator with domain D(A). State the Hille-Yosida-Phillips
theorem giving necessary and sufficient conditions for the unique solv-
ability of the problem

w4+ Ay =0
u(0) = uy € D{A).

Be sure to define pertinent terms.
2. Apply the above result to the initial boundary value problem

g —uy =0, >0, r€R
w(0.) = (), & € B

Solve this problem explicitly.

Also state a result about the initial value problem

wp—uy = f(ha), t>0, z€R
w{0.7) = g(z), R

Exercise 10

1. State the theorem of Rellich-Kondrachov for bounded open sets G C
'Y,

B

Let
f:GxR—=R

be a continuons bounded function such that
|flzu)l < M, (z,u) € GxRr

where M is a constant. Show that the boundary value problem:



~Au = f(z,u), u€ Hy(G). (8)

has a solution by converting {8) into an equivalent fixed point problem
in L*(GY and by applying Schauder’s fixed point theorem (give reasons
why its hypotheses hold!).
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Part A

1. Let E be an open subset of JR" containing Xo and assume that fisa
continuously differentiable function mapping £ into JR".

(a} Use the method of successive approximations to prove that the
initial value problem x' = £(x), x(0) = x¢ has a unique solution
on some interval [—a, ], and give an estimate for a.

(b) Indicate how the result in (a) can be used to prove a similar result
for the nonautonomous case.

9. Let E be an open subset of JR* containing the origin and xg. Assume
that f is a continuously differentiable function mapping £ into IR
Suppose £(0) = 0 and A = Df{0). Let U and V' be subsets of

containing the origin.

{a) Define the maximal interval of existence [ (x0).
(b) Define the flow ¢;{xq).

(¢) Define a homeomorphism H of U onto V.

wwwwwwmngﬁwmm&ebmmmwwmww

of ¢, A, H and xg. Be sure to include all necessary conditions.

(e} Consider x= (1, 27) with

1':1 = =T,

352 = Lg — Ty,

and x(0) = x¢. Write down the explicit solution to this equation.
Give the linearized system y = Ay, y(0) = yo and its explicit
solution. Give the homeomorphism H which relates the two solu-
tions.

3. (a) Prove Bendixson’s Criterion: Let f be of class C' in a simply
connected region E in IR?. Assume the divergence of f is not
identically zero and is either nonnegative in £ or nonpositive in
E. Then x = f{x) has no closed orbit which is entirely in .

(b) Extend the above proof to cover Dulac’s Criterion: Let B(zy,z3)
and £ be of class € in a simply connected region E in [R?. Assume



(d)

the divergence of Bf is not identically zero and is either nonnega-
tive in E or nonpositive in F. Then % = f(x) has no closed orbit
which is entirely in £.

Consider the nondimensionalized Lotka-Volterra competition equa-
tlons

o= ru(l —u — o)
@ =v(l—v— au)
where r, og and g are positive parameters. Apply Dulac’s cri-

terion to this system for u,v > 0. (HINT: try B(u,v) = 1/uv.)
Does Bendixson’s criteria give a similar resuls?

Draw a biological conclusion.

4. Consider % = f(x) where x¢ R" and fe C'(IR", IR"). Suppose that
the solution through any point xg € IR™ exists for all 7 € R

(a)
(b)

Define the o- and w-limit sets of a point xy € IR".

Consider the nonlinear spring equation

T ax FgEy="0

where g(z) is an odd function of z, ¢'(x) > 0 and p 2 0. Translate
this equation to the x = f(x) form and linearize about the trivial
equilibrium. What conclusions can be made about the stability of
this equilibrium?

Define what is meant by a Lyapunov function for the above equa-
tion; derive one and verify that it is a Lyapunov function. Describe
the a- and w-limit sets of a point xo € R™ for the case p = 0 and
for the case p > 0. Make a conclusion about the stability of the
trivial equilibrium for each of these two cases.

5. Consider the system

Ty = I
g, = —ay +a2a{1 — 2f — 223).

Prove, by means of the Poincaré-Bendixson theorem, that there exists
at least one periodic orbit in the annulus 1/2 < 27 + x5 < L.



Part B

1. Consider the equation
alx, y)ug + b(z, y)uy = ez, y,u)
where a, b and c are suitably smooth

(a) Define what is meant by an integral surface for the above equation.

(b) Write down the characteristic equations and show how they can
be used to construct an integral surface that contains the curve
z = ¢(s), y = ¥(s), u=1n(s), where ¢, ¢ and 7 are CL.

(¢) What additional conditions, if any, must be placed on the data to
guarantee a locally unique solution? Explain carefully.

(d) Demonstrate the above method by solving

Up + 2u, = —u

w(0.y) = fy)

where f is of class C'.

2. Let £ be a bounded open set. Define the Sobolev space Hy? (). Indi-
cate why this is a Hilbert space. State and prove Poincaré’s inequality
for functions u € Hy* () and thus verify that Hy* () is also a Hilbert
space with respect to the inner product

(u,v) = /QV?,L-WM.

3. Let @ be a bounded domain in #R". Consider

Au = f in Q
u = 0 on oK)

where f € L*(2).
(a) Define the concept of a weak Hy?(Q) solution to the above prob-
lem.

(b) Use Poincaré’s inequality to prove existence of a weak Hy”(2)
solution.



4.

(¢) Assume that Q2 is smooth. Prove that any two solutions in C*(£2)N
C'()) must agree. How would you prove this result for any two
solutions in C?(£2) N C{Q)?

Give the heat equation on a semi-infinite rod with initial temperature
g(z) and Dirichlet boundary conditions. Apply the method of odd
extension of the heat kernel formula for (—o0,00) to derive a formula
for the solution.

(a) State d’Alambert’s formula for the solutions u of the wave equa-
tion ey = Uzy.

(b} Consider the initial boundary value problem

Upy = Uy for O<ae<m, t>0
u(x,0) = flz), ug(x,0) =0 for O<z <
u(0,%) = 0, u(m, i) =0 for t > 0.

Use d’Alambert’s formula and the parallelogram rule to define a
weak solution solution to this problem. HINT: divide the region
R={{x.):0<x <m0} into subregions. What compatibil-

ity conditions are needed upon f to ensure that the above solution
is . is C' and is C*7

(c) Show that the energy
1 rm 2y g,
E(t) = §f0 (u; + ug) dr

is conserved, and use this to prove that a C? solution to the above
initial boundary value problem is unique.

o
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2 Part A - ODE

2.1 FExercise 1

Let | |
frexpY 58"

be a continuous mapping which satisfies

i) — FiL) < Lite —yl, Y1 € B, Yo,y en?™, (2.1)

where
Lom s [0,20)

-} is a norm in 2N, Consider the initial

is a continuous function and where
value problem
2 = f(t,2) "

a(te) = wg, 1 € B, 7o € BV,

B
A
p—

i. State the fundamental existence uniqueness theorem for solutions of
(2.2} and sketch a proof.

20 State a general principle about the existence mntervals Tor solutions of
(2.2) and the behavior of solutions at the endpoints of these intervals,
3. Use the above and a Gronwall inequality argument (note: |f(¢, x)] <
[ft.2) —~ f(.0) 4+ 1f(t.0)]) to show that solutions of (2.2) are defined

on all of &

2.2 Exercise 2

Let again A : B — EN*N be a continnous N x N matrix. Consider the
systems

= Al
a = — AT (e,

ﬁ_\,-m
T
N
==

where A7 is the transpose of the matrix 4.

I. Define what is meant by a fundamental matrix solution ®{¢) of {2.3).

[SN4]



2. Use general existence uniqueness principles to give the form of all fun-
damental matrix solutions of (2.3).

3. Let ¥(#) be a fundamental matrix solution of (2.4}. Prove that
U P{t)
is a nonsingular constant matrix.

4. Derive the variation of constants formula (using the fundamental solu-
tion matrix @) for solutions of

N
o
—

' = Altye 4 R(4) [
5. Let ®(0) = identity = W(0). Give the variation of constants formula

derived above in terms of ® and W. Do you see any computational
advantages in this form of the variation of constants lormula.

2.3 Exercise 3

Use an indirect argument (and basic existence uniqueness principles} to prove

the following:
— — . 3 . . - . .
If v : % — B belonging to (#(—oc,0c) is a one-signed solution (i.e. it
either is everywhere nonnegative or everywhere nonpositve) of the equation

—u” + V (u — (v = ulu,

5 B s contintous, then v is either identically zero or never zero.

where V'

2.4 Exercise 4

Let

o
[
L




such that ’
&) = Volr) fle) <0, w BV,

Prove that the w—limit set of any bounded semiorbit of (2.6) is an invariant
set for the flow associated with (2.6) and is contained in the set

E={r:¢'{x) =0}

Apply this result to the system

v = -y u®

UsIng
2 4
o) v u
o, v) = — + —
A B

What is your conclusion?

L 2 j cleo b
i 2 Y A CLYCCF

¥

Let A be a N x N matrix all of whose eigenvalues have negative real parts

and consider the system

-2
S

@ = Az 4 (1), %

Y is a continuous function which satisfies

where i : B —
h{t + T} = h(t). ¥t € &,

Show that for all such & (2.7} has a unique solution @ such that
et 4+ T) =x(t), Vi€ r

What stability properties does this periodic orbit have? How may the re-
quirement stipulated above on the eigenvalues of A4 be changed and still

maintain the existence uniqueness result vou just proved?



3.1

Part B - PDE

Exercise 6

Let (7 ¢ &Y be an open set. Define what is meant by a distribution on
(7. Let f € L*((¥) be a real function. Show that f may be identified

with a distribution 15,

Let T be a distribution on (¢ and let o = (o, -, ax} be a multiindex.
Define the concept of the a—th distributional derivative of 7.

Let
0, ¢ < -1
rity=4¢ 1, =1 <i<]
0, t>1

Think of r as a distribution on & and compute all distributional deriva-
tives of r.

Provide the higher dimensional analogue of the previous exercise, Le.,
let

3.2

=D

he defined by

(Compute the distributional gradient Vr of .

Exercise 7
Let (& be an open set. Define the Sobolev spaces H™ (G}, m = 1,2,
and HZ(G), m = 1,2,---. Indicate why these spaces are Hilbert
spaces.
Let (¢ be a bounded open set. State and prove Poincare’s mequality
for functions v € HY{(G) and thus verily that Hj((F) is also a Hilbert
space with respect to the inner product

(4,0 ) = / Vu - Veda.
S



3.3

&

3.4

Exercise 8

Let (& be an open subset of BY and let f € L*((/). Show that f defines
a continuous linear functional on A ().

State the Lax-Milgram theorem for subspaces V' ¢ H' ().

Show that in the sense of distributions there exists a unique solution
u € HJ(G) of the equation

—Au+u=f.

(‘haracterize the orthogonal complement of H2{0, oc) in the space H'(0, oc).

Exercise 9

. Let H bhe a Hilbert space and let

A DAY = H

be a linear operator with domain D(A4). State the Hille-Yosida-Phillips

theorem giving necessary and sufficient conditions ior the unique soiv-
ability of the problem

' + Au =10
u{0) = uy € D(A).

Be sure to define pertinent terms.
Apply the above result to the initial boundary value problem

Uy = U, = 0.+>0 recm
ull.x) = glx), v €&

Solve this problem explicitly.

Also state a result about the initial value problem

- u, = f{Lae), t >0, reR
u(0,7) = gla), v € R

6



3.5 Exercise 10

State the minimum principle for superharmonic functions and use it to show
that il © € C%(() is a nontrivial solution of

Au+de =0, u= 0. on JG, (3.1)

where A > 0 is a real parameter and (7 is a bounded open set, then u(x) >
0. r e (.

Also show that the set of A > 0. for which {3.1) has a solution is bounded
above. (Hint: Let Ay > 0 be the smallest value for which

Ad+ Ao =0, o =0, on JG, (3.2)

has a nontrivial solution {recall the spectral theorem and properties of the
eigenfunction ¢).)




Department of Mathematics
University of Utah
Ph. D. Preliminary Exam in Differential Equations
Autumn 1998

Instructions The exam has two parts, each comprising five questions. You must answer three
questions from Part I, and three questions from Part I, and all questions carry equal weight. If
you choose to answer more than three questions in either part, indicate clearly which three are to
be graded.

To receive full credit your solutions must be presented clearly and as completely as possible,
and your work must be readable. If you find yourself short of time but can sketch the solution to a
problem, state how to do it as precisely as possible and you will receive partial credit. You might
find it useful to write down the major steps in any case to help organize your thoughts, but this is
optional if the detailed work is correct.

Part 1.

{1} Consider the problem

- e (L.1)
z{te) = =z

where f € C(D,R") and I C R™ x R is open. Suppose that f is Lipschitz continuous in z
for (z,t) € D.

(a) Prove the existence of a local (in t) solution to (1.1) using successive approximations.

(b) Prove the uniqueness of this solution and show that it can be extended until it meets
ap.

(¢) Prove that the solution is continuous in (zg, ).

(2) Consider

% = Az + f(z) (2.1)

ZE(O) = T

where £ € R" and A is a constant » x n matrix. Suppose that A is semisimple, that f € C?
and that f(0) =0, D f(0) = 0.
(a) Define what is meant by the stable manifold, the center manifold and the unstable
manifold at the origin for (2.1).

(b) Give a representation of the solution of (2.1) when f = 0, in terms of the eigenvalues of A
and the associated projections and nilpotents. Indicate how to compute the projections.

(c) Discuss the asymptotic behavior of the solution in (b) for ¢ = oo. Characterize the
manifolds defined in (a) as precisely as possible.



{(d) Give a representation of the solution of (2.1) for f # 0. Under what conditions, if any,
on A and the initial data can one conclude that this solution exists for all £ € Rt. You
need not prove all the assertions for the last part, but should at least state your resaons.

(e} State the Hartman-Grobman theorem for

and state clearly what further conditions, if any, are needed on (2.1} to apply the
Hartman-Grobman theorem to (2.1).

(3) Consider
7' = f(z) (3.1)

where z € R™ and f € C'(R", R"). Suppose that the solution through any point zo € R"
exists for all ¢ € R.

(a) Define the positive and negative semiorbits of (3.1) through =g € R".

(b) Define the a— and w~limit sets of a point 2 € R".

(c) Consider the nonlinear spring equation
z' +g{x) =0 (3.2)

where g(z) is an odd function of z and g'(z) > 0. Describe the a— and w-limit set for
any point on the positive z-axis.

(d) Consider

"+ 2 +g{z) =0 (3.3)

where g is as in (c}. Define what is meant by a Liapunov function for this equation and
derive one {verify that it is a Liapunov function). Describe the w-limit set for any point

in the plane.
(4) Consider the system
7 = f(z) (4.1)
where f € C'(R", R"), and suppose that (4.1) has a periodic solution (¢} of least period T.

(a) Define what it means to say that (¢) is orbitally asymptotically stable with asymptotic
phase.

(b) Let
&= A(t)¢ (4.2)

be the variational equation (the linearization of (4.1)) relative to (). State the Floquet
representation for the fundamental matrix solution of (4.2) and discuss the stability of
+(t) in terms of properties of the fundamental matrix solution.



(¢} Consider the system

!

g = z—y-a(s +7°)
v = z+y-y@+y)
Find a nontrivial periodic solution of this equation, and prove (in the easiest way possi-
ble) that this periodic solution is orbitally asymptotically stable with asymptotic phase.
Compute the asymptotic phase explicitly.
(d) Compute the Poincare map associated with the periodic orbit you found in {c).

(5) Consider the problem
_d, du
du
au(O)««Pﬂ@(D) = 0 (5.1)
du
’yu(l)-{-éaw;(l) =0

where = € [0,1],p € C'{0,1],¢eC[0,1}], and o, 3,7, ¢ are constants.

(a) Show that (5.1) is self-adjoint if and only if p and ¢ are real, 78 = 76, and off = &f.

(b) Suppose hereafter that p = ¢ = La =1 =0 v=0 d = 1. Compute the
eigenvalues and eigenfunctions for L with the given boundary conditions.

(c) Compute the Green’s function for L (with coefficients and boundary conditions as in
(b))-

(d) Show how to solve the nonhomogeneous problem

PR
with L and the boundary conditions as in (c). What conditions on f suffice to make u
a classical solution?

Part II.

(6) Consider the linear partial differential equation

Lu= Y aa(x)8u=f (6.1)
ol <k
where a = (ay, -+ ,ay) is a multi-index. Let §2 C R™ be a bounded domain with piecewise

smooth boundary and suppose throughout this problem that the coefficients in the equations
are smooth.

{a) Define what is meant by a weak solution of (6.1).

{b) Define the principal part of L, the characteristic variety of L, and a characteristic surface
for L.

(¢} Obtain conditions on a, b and ¢ under which

Lu = a(z, y)tzs + 26(3, Y)tsy + (T, )y =0

is



(i) hyperbolic
(it) elliptic
(iii) parabolic.
(d) Define what is meant by a well-posed problem for a partial differential equation with
boundary and/or initial data specified. Give an example of a well-posed problem for one
of the three types of equation in (c) and briefly justify your assertions.

(7) Consider the problem

Uy — gy = U
u(z,0) = Flz) (7.1)
ug(x,0) = 0

u(0,8) = ulr,t) = 0

(a) Use separation of variables to formally solve (7.1) when F € C|0,n].

(b} Suppose that F' € C*[0,#] and that F"(0) = F"(r) = 0. Prove that the series you
obtain in (a) defines a classical solution of (7.1) under the foregoing conditions on F'.

(8) Consider the equation
a(z, y)us + b(z, y)uy = c(z, 3, ) (8.1)
where a, b and ¢ are suitably smooth.

(a) Define what is meant by an integral surface for (8.1).

(b) Write down the characteristic equations for (8.1) and show how they can be used fo
construct an integral surface of (8.1) that contains the curve

x=vp(s) y=w(s) w=nls),

where ¢, and 7 are C1.
(¢c) What additional conditions, if any, must be placed on the data to guarantee a locally
unique solution? Explain carefully.

(d) Consider the equation

g + Uty = 0 (82)
with initial data given by
1 z<0
u(x, 0) = uplz) = { l—=z z € (0,1} (8.3)
0 z>1

Does (8.2)—(8.3) have a unique classical solution for ¢ > 0? A unique weak solution for
t > 07 Explain.
(9) (a) Let @ C R"beopenandletu € C (). Define what it means to say that u is subharmonic
in Q.
(b) Let © be open, bounded and connected and let © € C2(2) N C°(S2) be subharmonic.
State the weak form of the maximum principle for u.

4



{c) Consider the Dirichlet problem
Au = f i Q (9.1)
u = 0 on 08

where f € C°($2) and Q is as in (b). Describe in as much detail as you can the major

steps in proving the existence of a classical solution of (9.1) via Perron’s Method.

be the space of C™ functions with support in . Define

(10) Let 2 C R be open, and let C§°(§2)
— 0 iff 3 a compact set K C §2 such that

convergence of a sequence ¢y as follows: ¢n
(i) Support ¢n C K for all n
(i) Jim :16113 P (x)]=0forpe Z*.
{a) Define what is meant by a distribution on C§°(§2).
(b} Define

y(p) = / " f(@)pla)ds

where f € L¥¢(2) and ¢ € C§°(§2). Does this define a distribution on C§°(2)? Give

reasons.

{c) Give a concrete example of a regular distribution and verify that is is a distribution.

(d) Show how to define the derivatives of a regular distribution.




DEPARTMENT OF MATHEMATICS
University of Utah
Ph.D. PRELIMINARY EXAMINATION IN DIFFERENTIAL EQUATIONS
Autumn 1897

Instructions: The examination has two parts consisting of six problems
each. You are to work four problems from part A and four
problems from part B. If you work more than the required
number of problems, then state which problems you wish to
be graded, otherwise the first four will be graded.

Tn order to receive maximum credit, solutions to problems
must be clearly and carefully presented and should be as
detailed as possible. All problems are worth 20 points.

A passing score is 96.

A. Ordinary differential equations: Do four problems for full credit.

A1. Suppose that f € C1(R?) and satisfies the condition |fy(z, )| < ¢ for all (z,y) €
R2 where ¢; < oo is constant. Consider the initial value problem

1) =i
1 . o
i y(G) = §,
where £ € R. Let o(t; &) denote the unique solution of (1) defined for 0 < ¢ < o0,
(a.) Show that %‘g—(t; £) exists for allt > 0, £ € R.

y—3 . Op
J L T d =(¢;3).
(b) et f(tiy) 1+y2+t2 Fin 35(:3)
A2. Show that the following system
%’f = 2z +yz
%g = Yy+zz
%‘;4 = -2 4 Y

has trajectories which come in arbitrarily close to the origin and then escape from
it. That is, show that there is an open set V C R3 containing the origin so that
given any other open neighborhood 0 € U C V, there is a solution v € CHR,R?)
of the system and three real numbers 71 < 72 < 73 such that )€V, v(m)eU

and y(m3) ¢ V.



A3.

Show that the following system
%_f. = 4sin(z) cos(y) + cos(3z),
%% = —4 cos(z) sin(y) + cos(3y).

has a nontrivial limit cycle. You may assume that the set of all stationary points
is {(% +kmr,§ +mn) : k, m are integers }.

Ad. Let f € C%'~(R x R™,R™). Consider the initial value problem
z(r) = § for (1,€) e R x R".
Assume f(t,0) = 0 so that z(t) = 0 is a global solution of (2).
(a.) Define: z is a uniformly Ligpunov stable solution of (2).
(b.) Suppose f(t,z) = Az where A is a constant matrix. State the precise condi-
tions on A under which z(¢) is uniformly Liapunov stable in equation (2).
(c.) Assume that A is a real matrix whose eigenvalues have negative real part
(Reo(A) < 0) and B(t) is continuous for all t € R. Show that there is an
¢ > 0 depending on A so that if ||B]| < £ then the zero solution of (2) with
f(z,t) = Az + B(t)z is uniformly Liapunov stable.
A5. Determine if there are any nontrivial periodic solutions to the system
(dr - 2z -ty-tazcost—ysint
i %% = x4+ 2y-—zcost+tysint
One solution is (&%t cost, €% sint).
A6. Let A and be a complex n x n matrix whose eigenvalues A € o(A) all satisfy

Fe \ < 0. Show that the flows w'(z) = e**z and ¥*(z) = e~'z are flow equivalent,
i.e., there is a homeomorphism h : C* — C" so that h{pt(z)) = ¥*(h{x)) for all
teRand z € C".

B. Partial Differential Equations. Do four problems to get full credit.

B1.

(3)

Consider the initial value problem

s + uuy =f(z,1) forallz,t € R, t > 0
u(z,0) =p(z) for all z € R.

where p € C1{(R)
(a.) Define what is meant by a weak solution of (3).
(b.) Using the method of characteristics, solve the initial value problem (3) as-

suming f(z,t) = z and ¢(s) = s.



(c.) Assume f(z,t) = 0. Show by example that if

(z) = o, ifz <0,
PEZ\ 8, x>0

where a <  are constants, then the IVP (3) may have more that one weak
solution. (Check that your examples are weak solutions.)
(d.) Under what additional condition are the weak solutions unique?
B2. Consider the wave equation with dispersion in halfspace

Uy — Au+u=0 forreR", teRY ={teR:t>0}

(4) u(z,0) =p(z)

uy(x,0) =(z)

where the initial functions ¢,1 are smooth with compact support. Show that
signals propogate at finite speed by obtaining a domain of dependence result.

B3. Let  C R be a smooth bounded domain and consider the boundary value problem
for harmonic functions

forzr e R"

Au =0 for z € (2,

(5) u(z) =p(z) for z € O%1.

where p € C%(90) is just continuous. Let B-(€) C § be a ball of radius 2r > 0.

Suppose that we are proving the existence of a sotution of the boundary value—

problem (5) using the Perron Process. Namely, let
S,={ue C?(51) : u subharmonic and u(z) < o(z) for all z € 80}

and let wy,(z) == sup{u(z) : u € Sp}.
(a.) Show that there is a constant ¢ < o0 depending only on n and r so that

sup{|Du{z)| : z € B.(0)} < csup{u(z)|:z € 8B.,.(0)}.

for all harmonic functions u on Bz,(0).

(b.) Show that there is a sequence of functions u; € S, so that u; — w, uniformly
in B(§).

(c.} Show that w, is harmonic in B(£).

B4. For v € C°(R), define F by the formula (F, vy = /(0).

(a.) Show that F is a distribution on R.

(b.) Let ¢ € Co(R) be continuous with compact support such that the integral
T f; ¢(x)dz = 1. Show that as distributions, the convolutions (. x F' — [ as

1,7/
e — 0, x:here C(z) == —E-C (-E)
.. d :
(c.) Find EEEF for all integers k > 0.



B5. Let § C R™ be a smooth bounded domain and let f(z) € C%{2) and V(z) €
C%($1, R™) a continuous functions. Consider the boundary value problem

Au+V(z) -Vu= f(z) zef
6) u(z) =0 z €00

(a.) State the Poincaré inequality for functions u € HL(R).

(b.) Find a condition relating 2 and V which implies there exists a unique weak
solution u € HE(R) for problem (6). Prove the existence and uniqueness
under your condition.

B6. Let T" = S! x --- x S! denote the n-dimensional torus, the n-fold product of unit
circles. Saying u(z) € C*°(T™) is equivalent to saying u(z) is a smooth function
on R™ which is 27-periodic in each variable. For a constant a < 0 let the operator

Lu:= Au+au.
(a.) Define the Sobolev Space H k(T") = H*?(T") for k a nonnegative integer.
Explain how to make sense of H*(T") for s € R.

(b.) Show that for all nonnegative integers k there is a constant c(k,n) < oo so
that for all v € H**2(T™) we have

IUIH"“(?“) sc (lLuIHk(qr") + luIHG{'K‘“)) .

(c.) Assume that v € H'(T") is a weak solution to Lu = f(z) on T", where
f e C°(T™). Show that u € C=(T").



Differential Equations Preliminary
Examination

Department of Mathematics
University of Utah
Salt Lake City, Utah 84112

September 1996

1 Instructions

This examination consists of two parts, called Part A and Part B. Part A
consists of exercises concerning Ordinary Differential Equations and Part B

consists of exercises concerning Partial Differential Equations.

To obtain full credit you should fully complete three exercises from each
part. All problems are weighted equally and a passing score will be 60% of
the total possible score.

It is important that your arguments and discussion will be sound and
detailed, bearing in mind that too many details are time consuming. Thus
your judgement of what is essential will be an important factor in determining

the final score.
Good Luck!
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2.1

Part A - ODE

Exercise 1 Use of the implicit function theorem

Let £ denote the normed linear space

E=C*0.7®)

with norm

and .\ the space

2
lullz = > max [ul(z)]
j 0.7}

X = C(0.7), =),

with norm

hully = [ax ()]

1. Give brief arguments that £ and X are Banach spaces.
2. Define
F. oy X
7
by
ur flu) =u"+ du+u°, {(2.1)

where A € 2. Show that f is a C! mapping.

. Let

Ey = EnN{u:u(0)=u(x) =10},

and restrict f to Ey. Show that, except for a countable set of values of
X (describe this set ), the following holds: There exists & = () such
that for all & € X, [[h]lx < &, there exists a unique u € Ep such that

f{u) = h, (2.2)
i.e. the problem
1 s —
u' A u+ut=h (2.3)
u(0) =0 = u(w)

has a unique solution.

R



2.2 Exercise 2 Use of the Brouwer fized point theorem

f:i2x ER-
be a C'! mapping which satisfies
r- flt,z) <0, te = |r|= R, (2.4)
where | - | is the Euclidean norm and - is the inner product in zVand Risa
positive number.
1. Define the mapping _ '
yezt e By ezt (2.9)
by
Filyy = xitoy) (2.6)
where x(t,y) solves
o= f(t.x) -
2.7
((0.y) = =7

Ciive reasons that F, is well-defined for each small ¢ and well-defined
for all ¢t € 2, whenever |y| £ A.

2. Show that for each T > 0 there exists yr, |yr| < R such that
Fr{yr)=yr. (2.8)

3. What can one say if the condition (2.4) is replaced by

- flt,z) >0, te? lal= A (2.9)

4. Let f have the special form
flt,z) = Az + h{t), (2.10)

where & : @ — BY is a continuous function of period T and A is
a constant N x N matrix which is positive (negative) definite (i.e.
Az-z > piz)?, resp. Az-z < —pjz[’. ¢ > 0). Use the result proved
above to show that the equation

= Az + At (2.11)

has a unique T —periodic solution.



2.3 Exercise 3 Use of the Leray-Schauder degree

Let again A be a positive (negative) definite :V x NV matrix {see previous
exercise) and consider the system

¢ = Ar + ¢h{t, 1), (2.12)

where € is a real parameter and h : R x 2V s 7Y

function, L.e.

is a continuous 7 —periodic

At + T,z) = h(t, ), t €2, z€RY.
which satisfies
At o) <a+blal, te= e,

where a and b are positive constants. Consider the problem of the existence
of T—periodic solutions of {2.12), i.e. solutions of

o= Az +eh(t, 1)

2(0) = «(T). (2.13)

1. Convert problem (2.13) into an equivalent fixed point problem in an
appropriate Banach space.

2. Use Gronwall’s inequalisy (or a similar argument) to establish the ex-
istence of a priori bounds on |z{t)|* for a solution z of (2.13).

3. Use properties of the Leray-Schauder degree to deduce that {2.13) has
a T—periodic solution for all ¢.



2.4 Exercise 4 Invartant sets - asymptotic stability

Let
foa¥ sz

be a C' mapping and consider the system

= f(z). (2.14)
Assume there exists a ¢! functional
O P"\' — -

such that '
&) = Vola)- flz) <0, € 2V

I. Give a brief sketch of the proof of the following theorem:

Theorem: Let
E={r:0(r)=10}

and let M be the largest invariant set of (2.14) in E. Then every

tounded tfort >0 semiorbit-of {214 )-tends-to-M-as+—r00r e
2. Apply this theorem to the system

= —v

o = v+ g(u)
(u)
r= \
v

where g : B — R is a C'! function such that
ug(u) >0, u#0,

using

VWhat is your conclusion?

()]



2.5 Exercise 5 Lyapunov stability

Let 4 be a ¥ x .V matrix all of whose eigenvalues have negative real parts
and consider the system
' = Az + k{4, 1), (2.13)

where A : 2 x 2Y¥ — B i{s a C! function which satisfies
h(t, 2)} < b(8))z]?, t ez xR,

where b € L*(0,00). Show that every solution z of (2.15) with |z(0)| small

satisfies
im 2{t) = 0.

=20




3.1

Part B - PDE

Exercise 6 Distributions

Let G C 2V be an open set and let m > O bean integer. Let f € C™(G)
be real or complex valued function. Show that f may be identified with
a distribution Ty and compute the distributional derivatives of T up
to order m. ‘ :

. Let

(o) = i >0
= 0. <0 -

Compute all distributional derivatives of r.




3.2

L.

S

Fxercise 7 Sobolev spaces

Let & be an open set. Define the Sobolev spaces H™(G), W™*{G),
and W53 (G) and show that A™(() is a Hilbert space. Give conditions
under which any two of the three spaces are equal.

Let (@ be a bounded open set. State and prove Poincaré’s inequality for
functions u € Wy*(G) and thus verify that Wa(G) is also a Hilbert
space with respect to the inner product

::/ V- Vedr.
G

{u, L‘)W;:{G)




3.3 Exercise 8 Distributional solutions. Riesz representa-
tion theorem

Let GG be an open subset of B and let f € L*G). Show that f defines a
continuous linear functional on Wy *(G).

1. Show that in the sense of distributions there exists a unique solution
i € Wy {G) of the equation

~Au+u=f

2 Let G be bounded. Show that in the sense of distributions there exists
a unique solution u € Wy (G) of the equation

~Nu=f.

3. Characterize the orthogonal complement of Wa{G) in the space W12 G).




3.4 Exercise 9 Lar - Milgram theorem

State the Lax-Milgram theorem {defining pertinent terms) and provide an
application to boundary value problems for elliptic partial differential equa-

tions.

10



3.5 Exercise 10 Semigroups
1. Let H be a Hilbert space and let
A:DA)—= H

be a linear operator with domain D(.4). State the Hille-Yosida-Phillips
theorem giving necessary and sufficient conditions for the unique solv-
ability of the problem

W+ Au=10
(0} = uy € D{A).

Be sure to define pertinent terms.
2. Apply the above result to the initial boundary value problem

Uy —tyy =0, £ >0, x€{0,m)
w(0,z) = glx). v € (0.7)

11



Written Qualifying Examination in
DIFFERENTIAL EQUATIONS
September 14, 1995

Instructions: The examination has two parts consisting of eight and
four problems respectively. You are to work four problems from part A
and two problems from part B. If you work on more than the required

number of problems then state which problems you wish to be graded.

Problems will be assigned equal weight for grading. In order to pass
the Qualifying Examination your overall score must be at least 60 %.



Part A
Do four problems for full credit.

Problem A1l. Suppose D is the rectahgle defined by |[z—xq| < a,|y—yo| < b
in the plane R, Suppose that f is a real valued function defined on D which
is continuous, hence bounded by some nonnegative number M on D.

(i) Show that if a = min{a, -ﬁ;}, then there exists a function y(z), defined
on |z — zo} < @, such that

y'(z) = f(z,y(z)) and y(zo) = vo.

(ii) Show that the solutions y guaranteed in part (i) may not be unique;
that is, give an example in which (i) holds and more than one solution y{z)
exists through the point (2¢, o) in your example.

Problem A2.

(i} Suppose A is a constant n X n matrix and consider the equation

2(t) = Axz(t).
Show that if all eigenvalues have negative real parts then the trivial solution
z(t) = 0 is asymptotically stable; that is, every solution z(t) — 0 as t — co.

(i1} Show that if one eigenvalue of 4 has positive real part, then the trivial
solution of A is not stable.

(iii) Under what circumstances is the trivial solution stable if A has no

eigenvalue with positive real part, but does ITave eigenvalues withzero Teal
part? {State, don’t prove) '

(iv) Do any of these results carry over if A is pot a constant matrix? (State,
don’t prove.)

Problem A3.

(Concrete cases from 2.) Change to vector-matrix form and discuss the
stability of the trivial solution of the following equations.

(iy v’ —u=0
(i) o”+2kw'+u=0 with £>0
(i) u® 420" +u=0

(iv) ¥ =©y where © Iisthe matrix of all zeros.

Problem Ad4.

(i) Suppose A is an n x n matrix whose elements a;;{t) are each of period
T. You may assume existence and uniqueness of a fundamental matrix $(t)
for the equation

#(1) = A()z(2).



Show that ®(t + T) is also a fundamental matrix for the equation, hence
®(t+ T) = ®(t) - C for some non-singular matrix C.

(i) You may assume that a non-singular matrix C has a logarithm, ie. ,
¢ = ef for some n x n matrix B.

Show that there exists a non-singular matrix P(t) of peried T such that
O(t) = P(t)eB*  Floquet’s Theorem.

Hint: Solve for P{t) and check.
(iii) Make the change of variables y = P(t)u(t) and change the periodic
system ¢ = A(t)y into the system

w = Bu.

Problem AS5. Write a short essay discussing the basic concepts of au-
tonomous dynamical systems. Describe flows, trajectories, equilibrium points,
stability, asymptotic stability and local linearizations, etc.

Problem A6. Write a brief discussion of the method of characteristics
and then demonstrate the method by solving

ug +uy =t u(z,0) = z

Problem A7, Sunpose wled) 7 € FLE € [0,50) 5 of class O and that

u is a solution of
U = Uzgp

u(z,0) g(z)
ug(z,0) = h(z).

il

Suppose g and h are in C§°. (C'™ functions with compact support.) Define

1 o
E(t) = 5 / ui(z, t)dz  (kinetic energy)
-

and | o
p(t) = 3 ] u2(x,t)dz (potential energy)
-

Prove that k(t) + p(t) is constant and that for sufficiently large times t,
k(t) = p(t). Hint: d’Alembert’s solution.

Problem AS8. State the “strong maximum” principle for Laplace’s equa-
tion and sketch a proof of it. Tell why one cares.



Part B
Do two problems for full credit.

Problem B1. Consider the Sturm-Liouville operator

1 N
Lu= m{-'@(m)u ) + g(z)u}

where p(z) > 0, w(z) > 0 and 1/p(x), ¢(z) and w(z) are locally Lebesgue
integrable on an arbitrary interval I (open or closed, bounded or unbounded}.

(a) Define what is meant by a solution of Lu= Auon L

(b) Show that the initial value problem for the differential equation Lu = Aun
on I with u(zq) = ¢1, (pu'}(ze) = 2 at xp € I is equivalent to an integral
equation for the vector (uy,u2) = {u, pu’). Prove the equivalence.

Problem B2. A bounded linear operator F in a complex Hilbert space
H is a projection if and only if P? = P. Prove that a projection P is an
orthogonal projection (so that PH L(1—PYH) if and only if P is selfadjoint.
(You may use the known theorem that a bounded linear operator A in H is
selfadjoint if and only if (Ar,7) is real for alz € H.)

Problem B3. Define a regular Sturm-Liouville operator by the equation
Lu=—(22)"Y((2x) ) onl <z < V2 using boundary conditions u(1) =
u(v2) = 0.

(a) Explain how £ and the boundary conditions can be used to construct a

selfadjoint operator S 1n a suitable Hilbert space H. Do not give proofs:
(b) Calculate the eigenvalues and eigenfunctions of § using the solution
basis u1(z) = sin(v/Ar?), us(z) = cos(v/Az?) of the differential equation
L2 — e = 0. Do not derive the basis.

(c) Verify by direct integration that the eigenfunctions are orthogonal in H.

Problem B4. Let S be the selfadjoint realization in the Hilbert space H =
Ly(0,00) for the singular Sturm-Liouville operator £ = —1" on 0 <z <00
with boundary condition w'(0) = 0. Assume that 5 is defined by the domain
D(S)={ueH : " €H and u'(0) = 0} and the relation Su = ~u” for all
u € D(8). '

(a) Show that the Green’s function G for the operator S is given by the
equation below, where ( = re' and V= re?? on0 < 6 < 2m

iV cos(VCx)/VE for DSz <y <o,
G(z,y,() =
z'e"\/c_z cos(\/gy)/\/(f for 0 <y < <.

(b) Prove that the operator S has a pure continuous spectrum consisting of
all non-negative real numbers.



Written Qualifying Examination in
DIFFERENTIAL EQUATIONS
September 13, 1994

Instructions: The examination has three parts which will be assigned
separate scores. A perfect score (100%) requires complete solutions
of three problems from part A, three problems from part B and two

problems from part C. If you work on more than the required number
of problems then state which problems you wish to be graded.

In order to pass the Qualifying Examination you must score at least
60% on part A, at least 60% on part B and at least 60% on part C.



Part A
Ordinary Differential Equations 641
Do three (3) problems for full credit.
Partial credit applies to all problems.

Problem Al. Assume that the eigenvalues of a real n X n matrix A have
negative real part strictly less than —5. Prove that there exists a positive
constant M such that forallz € R* andt 20

le*a]l < Mljzfe™.

Problem A2. Consider the initial value problem
x' = f(t, ), .’E(fg) = Zo

on the set X: |t —tg| < a, |z~ 2o} £ b Let M = max |f(¢,z)} on X,
h = min(a, b/M). Assume that f is continuous on X, L > 0 and f satisfies
the Lipschitz condition |F(t,x)— f(t,v)| < Ljz~y] for (t,x) e X, (t,y) € X.
Prove the Picard-Lindeldf existence and uniqueness theorem: There exists
a unique solution z(t) defined on the interval |t —to| < A

Problem A3. Let P and Q be infinitely differentiable. Prove that =’ =
P(z,y), ¥ = Q(z,y) is a Hamiltonian system iff 7' = Q(z,y), ¥ = —P(z,y)

153 grar]\bnf ::yqum

Problem Ad4. Let the system z' = f(z) define a C! flow ¢, on the open
set E contained in B". Prove that the w limit set of a trajectory T is closed
and if it is also bounded, then it is nonvoid, compact and connected.

Problem A5. Letr?=z%+ P u=rt— 3r2 4+ 1 and consider the planar
system o' = —y + zu, ¥y = T +yu. Prove by means of the Poincaré -
Bendixson theorem that there are two periodic orbits, one in0<r<1and
anotherin 1 < r < 3.

Problem A6. Prove:

Let f be of class C! in a simply connected region E in R%. Assume the
divergence of f is not identically zero and either nonnegative in F or non-
positive in E. Then z' = f(z) has no closed orbit which is entirely in E.



Part B
Partial Differential Equations 642
Do three (3) problems for full credit.
Partial credit applies to all problems.

Problem B1l. Solve the wave equation uy = ?uzy + €°%, u{z,0) = 0,
u(z,0) =0on —co <z <00, 0 £t < o0

Problem B2. Suppose u is of class C? and Au > 0 in a bounded domain
! with C? boundary. State and prove a maximum principle.

Problem B3. Apply the method of odd extensions on the heat kernel
formula for (—oco,00) to derive a formula for the solution of the diffusion
equation on (0, co) with Dirichlet boundary conditions.

Problem B4. State and prove the Classical Fourier pointwise convergence
theorem for the representation of a function by its Fourier series.

Problem B5. Prove by means of the Poisson Formula that harmonic
functions are of class C'°°.

Problem B6. Define the Sobolev space H*(Q) and give an example of
a set 2 and a function f € H(Q) which does not agree a.e. with any C*
function.




Part C
Hilbert Space Theory 643
Do two (2) problems for full credit.
Partial credit applies to all problems.

Problem Cl. Let M be a Hilbert space with inner product (z,y) and let
the set {€,}22, be orthonormal in ‘H. Complete the following:

o0
{(a) Prove that the formal series g = Z( f,ex)en converges for each f € H
n=1
to an element g € H.
(b) Let the mapping P be defined on H by Pf = ¢, § = Lone1{f-€n)en-
Prove that P is an orthogonal projection on H.

Problem C2. Define a regular Sturm-Liouville operator by the equation
Lu = —z*(z') on 1/2 € z < 1 using boundary conditions u(1/2) =
u(1) = 0. Complete the following:

(a) Explain how £ and the boundary conditions can be used to construct
a selfadjoint operator S in a suitable Hilbert space H. Do not give proofs.

(b) Calculate the eigenvalues and eigenfunctions of the selfadjoint opera-
tor S, using the solution basis u;(z) = sin(A/z), ua(z) == cos(A/x) of the
differential equation #?(z%u’)’ + Au = 0. Do not derive the basis.

(c) Verify by direct integration that the eigenfunctions are orthogonal in
the Hilbert space H.

Problem C3. Let S be the selfadjoint realization in the Hilbert space H =
L,(0, 00) for the singular Sturm-Liouville operator L=—-u"oml<z <
with boundary condition u(0) = 0. Assume that S is defined by the domain
D(S) = {u € H : v € H and u(0) = 0} and the relation Su = —u" for all
u € D(S). Complete the following:

(a) Show that the Green’s function G for the operator 5 is given by the
equation below, where £ = re'? and € = \/Fe‘e/ Zon0 <8< 2n.

Ve sin(y/€z)/E for 0 <z <y < oo,
G(z,y,8) =
e’ E"sin(\/gy)/\/g for 0<y<z< oo,

(b) Prove that the operator S has a pure continuous spectrum consisting
of all non-negative real numbers.

Problem C4. Let T be a linear operator in a Hilbert space H with domain
D(T) dense in H. Complete the following:

(a) Define the adjoint operator T

(b) Let G(T') be the graph of T in H & . Define the operator V on
H @ H by V(f,g) = (g,—f). Prove that the graph of T* is the orthogonal
complement in H & H of V(G(T)), that is, G(T*) = (V(GT))H.

{c) Let G(T)” be the closure in H & H of the graph of 7. Prove that
HaH=V(GT)aGT).



1993 Preliminary Examination

Differential Equations

This examination consists of two parts, Part 1 - ODE and Part II - PDE.
The two parts are equally weighted. In order to receive maximum credit

solutions to problems should be clearly and carefully presented and should
be as detailed as possible.

The total number of points is 120. A passing score shall be a total of at least
78 points.




PART 1
ODE

The number of points assigned to the ODE problems is as follows:

! - 10 points
2 - 20 points
3 - 10 points
4 - 10 points
5 - 10 points
Total 60 points

=D



PART [: ODE

1. Let f:[0,1] x R — R be of class ¢! and let  be a solution of the
equation

d
x"mf(i,x), ,mgz (1)
satisfying
£10) = a, (1) = b.
suppose g{» >0forte [0,1],2z € R.
Prove that if 3 is near b, then there exists a solution ¢ of (1) such that

Also prove that only one such solution exists.
Hint: Let ©{0, o) be the solution of (1) satisfying

0(0.a) = a,
(0,0} = a.

Use dependence upon a parameter results to prove the claim.



9. Consider the linear system

= A(t)z, (2)

where A is a continuous n x n matrix defined on (~o0, c0), and z € R™

a)

b)

c)

Show that solutions of initial value problems for (2) are defined on
(—o0,00).

Let trace A(t) =0, t€ (—o0,00) and let X () be a matrix solution
of (2) show that det X(¢) = constant, t € (~00,00).

Let X(¢) be a matrix solution of (2) with det X(t,) # 0, some ¢,. Char-
acterize all other matrix solutions of (2} and provide a characterization
of all solutions of {2).

Assume that X(#) is a matrix solution of (2) with X (0) nonsingular
and X (¢) uniformly bounded on [0,00). Also assume

¢
lim inf Re [ trace A(s)ds > —co.

L0

Prove that X—l(i) is uniformly bounded on [0, 00) and no solution ¢(t)
of (2), not identically zero, can satisfy p{t) — 0 as t — oc.

Assume the conditions of d) and let B(t) be a continuous matrix func-

tion with o
[ 1A - Bl < +oo.

Let ¥ be a solution of
U= B(t)¥.

Show that ¥ must be uniformly bounded on [0, 0c).
Hint: ¥ also solves

U= A()T + (B{t) — A(t) L.

Use variation of constants.



3. Consider the system

o' = Az + f(t,2), (3)
where A is an n x n constant matrix, all of whose eigenvalues have negative
real part and f:[0,00) x R* — R" is continuous with

flt.z) = o(lz])

uniformly in ¢ > 0.

Prove that the identically zero solution of (3) is asymptotically stable.
What can you say about the trivial solution of (3) (stability properties} under
others assumptions about the eigenvalues of A?




4. Consider the planar system

d

= =he+y— e’ +37)

J (4)
—é{ =~z + Ay — ay(z® +3%),

where a € R is fixed and A € R is a parameter. Apply the Hopf bifurca-
tion theorem to deduce the existence of nontrivial periodic orbits bifurcating
from the trivial solution. What is the approximate period of the bifurcating

solutions?
Use other means to deduce the existence of periodic orbits for various cases

of the pair (A, a).




5. Consider again the equation
= Az + f(t,z), {5)
where A is a negative definite n x n matrix, i.e. 3 g > 0 such that
T Az < —p|zi?, (27 = transpose of z)

and f: R x R — R"™ is a Lipschitz continuous function which is periodic
with respect to t of period 7, i.e.

flt +7.1)= flt.z), t € Rz € R",

and is such that
- flt.z) <

IR

22, zl=R>0

where R is fixed.
Show that (5) has a periodic solution z(t) of period 7 with z(t)] < R.




PART II
PDE

The number of points assigned to the pde problems is as follows:

1 - 15 points
2 - 15 points
3 - 15 points
4 - 15 points
Total 60 points




PART II: PDE
1. Let G be an open subset of R™ and consider C2°(G).
a) Define what is meant by a distribution on G.

b) Let f: G — Rbea measurable function such that [ |fldz < o0
where G, is an open subset of G with G, compact, i.e. f € L}, (G),
show that each such f defines a unique distribution on G. Give an
example of a distribution which is not defined by such an f.

¢) If T is a distribution on G, define §°T, where a is 2 multi-index. Show
that if f € CHG), then f and its partial derivatives —g—f—_, 1 <1< n,
define unique distributions T,7.,1<i<nonG and 0°T =T, a =
(0,...,1,0,...,0) where the 1 appears in the ith place.

0,z<80
fm;g:im

d) Let

Y, >0,

distribution.
Compute df. Note that %ﬁ ¢ L} (R).

e) Let U : R — R be given by
Uz, t) = flz+1)+g(z — 1),
where f,g € L},.(R). Show that
B2 = U
in the sense of distributions.

£) Evaluate As(%), * = 22 +y2+2z% in R®, where A is the distributional
Laplacian.



2. Again let G be an open set in R".

a) Define the Sobolev spaces H™(G) and H*(G), where m is a nonnega-
tive integer.

b) Give a characterization of these spaces in terms of L*(() functions and
their distributional derivatives.

c) Let G be an open set in R™ with sup {|z1] : (z1,%2,-- -, Zn) € G} =
K < +co. Then

18l < 2K [10llieo), Yo € HMG). (6)

(Hint: For ¢ € C°(() compute

ad
a(Illlﬁ(m)lz)
and use the divergence theorem.)

Use (6) to obtain Poincare’s inequality for functions ¢ € H}(G), when-
_ever G is a bounded domain.

10



3. Let H be a complex Hilbert space and let
A: D(A) (the domain of A) C H — H

be a densely defined linear operator which 1s self-adjoint (give definition!).
Then

a) (Az,z)is real for all z € D(A), ((-,-) is the inner product of H).

b} All eigenvalues of A are real.

c) Eigenvectors corresponding to distinct eigenvalues are orthogonal.

d) Let A € C with ImA = 0. Show that A — A is invertible.

e) Let G = (0,1), V = HYG), and H = L*G). Define a(u,v) =
[} dudv dz. Use what you know about coercive and elliptic sesquilinear
forms and the spectral theorem for operators defined by them to find
a basis for L*(G). Be sure to present a fairly complete discussion.

11



4. Let H a Hilbert space.

a) Define the concepts “strongly continuous semigroup on H” and “in-

b)

finitesimal generator” of the semigroup.

Let {T(t) : t > 0} bea strongly continuous semigroup on H with
infinitesimal generator A. Show that

T(t) : D(A) — D(A)

and that the map
t— T(t)z, t € [0,00).

is differentiable and

%T(t)m = AT(t)z = T(t)Az, z € D(A).

State necessary and sufficient conditions in order that a linear operator
be the generator of a strongly continuous contraction semigroup on f.

Heethe-above toestablish the existence and uniqueness of solutions to

E W 4 S I O A T e

the initial value problem

Uy = U+ f(t,z),t >0, z€ (0,1)
U(0,2) = ¢(z)
Ut,0)=U(t1) =0

be sure to provide the appropriate function spaces for U, f,¢.




Department of Mathematics
University of Utah

Written Qualifying Examination in
DIFFERENTIAL EQUATIONS
September 18, 1992

Directions: Work two of Problems 1-4, two of Problems 5-8 and twoe of Problems
g-12. Fach problem is worth 20 points. T2 or more poilts will be a passing
score. For maximur credit your work must be legible. coherent and as detailed
as possible. If you work on more than 6 problems indicate which 6 are to be
graded.

Problem 1. Let £ be an open subset of R™. Let f be a coniinuously
differentiable function mapping £ into R, and let 1oy helong to £

a) Use the method of successive approximaticns to prove that the iaitial
value problem z' = f(r). x(0) = Zo has a unique solution on some interval
[~a,a}, and give an estimate for a.

b) Suggest how the result in a) can be used to prove & strrtar Tesaltfor-the
nonautomormous case.

Problem 2. Let A be a comstant n x n matrix, and define the matrix
exponential by e? = $0r, A¥/kL

a) Prove that ¢ is differentiable {you may use known theorems about
scalar power series), and that it satisfies the initial value problem X' = AX.
X(0) = [ (the identity matrix). Justify your steps.

b} Let A have distinct eigenvaiues. Prove that for the origin to be a globally
asymptotically stable point for X' = AX it issufficient that all of the eigenvalues
of A have negative real parts.

¢) Is the condition in b) that 4 have distinct eigenvalues required in order
to prove the result? (no proof necessary)

d) s the sufficient condition in L} also necessary” Jusufy vour answer.
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Problem 3. a) What does Floquet’s Theorem say about sciutions of linear
n % n systems X' = A({).X (A is a continuous # x » matrix)?

b) Show that, given any n x n matrices B (constant) and A{!) {vontinucus},
there is a change of variables Y = P({).\ whicl: reduces the systemn X' = A{1).X
to the system Y’ = BY.

¢} Show that there is a particular choice of P(t) and B that is related to
Floquet’s Theorem. Why might you be interested in that choice?
Problem 4. a) Show that the only equilibrium point of the svstem z" =
2y — 4% —4ry?, Y = r - 27y — 27 is the origin.

b) Draw what conclusions you can about stability, asymptotic stability. and
regions of attraction, using first i) huearization and then i) Lyapunoy functions.
nake clear the reasons for your conviusions,

¢) What if the signs of the nonlinear terms in a) were changed”
d) What kinds of functions f and ¢ would give similar results for systems .

of the form ' = =2y + flz.y) ¢ = r +glz. y)?

Problem 5. The quasilinear Cauchy problem

iy +yuuy +ry=0. u=95 when zy =1,

has the solution
ulr. y) = -1+ /38 = Zdxy.

a) Derive this solution by the method of characteristics, (Hint: Along a
characteristic x(s)., y(s), u(s) find d(ry}/ds and then dufds where 1 = ry.)

b) Verify that u(z,y) is a solution in the plane domain defined by ry < 19.

Problem 6. Consider the Dirichlet problem in a bounded plane domain
Upr + Uy =0 in §
u=f on &4

where f is continuous on €.

a) Prove that this Dirichlet problem has at most one solution. Define clearly
what you mean by a solution.
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b) Prove that if Qis a bounded domain for which the Dirichlet problem

is solvable for all f € C(d9) then_ﬂthe mapping f € C(¥) — u € {2y s
continuous in the uniform norms. (€ denotes the closure of 2.}

Problem 7. Consider the Dirichlet problem

Au=f n
u=0 on .

where O C R™ is a bounded open set and f € La(82).
a) Define the concept of a weak H3(Q) solution of the above problem.

b) Use the Poincaré inequality.
/ u’dr € c/ IVufdr forall ue Hi(,
0 0

to prove the existence of a weak H}($2) solution.

Problem 8. Consider the integral

e

ulxr,t) = - (e Mg,

T

a) Prove that if f(£) is continuous and bounded for all + then w is a solution
of the initial value problem

wy = ugy lorall —oc <o <. t >0,
u(z.0) = f(z) forall —oc<x<20
Formulate clearly what you mean by a solution.

b) Show how the results of part a) can be used to solve the initial-boundary

value problem
w, = uzr Jorall G<cr<lt >0

u(z,0) = g(z) for 0<r< L

w(0.t) = u(l. i) =0 for t= 0.

Define what you mean by a solution and state what conditions on g guarantee
that such a solution exists. :
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Problem 9. Consider the wave equation Uy = Ure-

a) State and derive the D'Alembert forinula for the solutions u of this
equatiorn.

b) Use the method of separation of variables to solve the initial-boundary
value problem

wp = ugy; for 0<z <l t >0,
u(z,0) = fl2)., w(z.0)= 0 for 0<r<l,
w0, 1) = a{l. )y =0 for £20.

Define what vou mean by a solution.

¢) Show how the solution of b) can be written in the D Alembert form.

Problem 10. Let 4 be a selfadjoint operator in a Hilbest space M and let {Ex}
be the spectral family of 4. Prove that if a real number g is in the resolvent set
of A then there exists an interval [ = (A A —pl <8} such that E =const. for
all A £ . {You may use without proof the Stieltjes- Hellinger-Stone theorem:
R.=(4-2)""

1 b
T— FW;, ‘*ijtt‘ i) = iim -—_ [ ([R,\_j,“ ""‘ .R,\_H]U. lt)d)\.

TOF WL, . —

Problem 11. Consider the regular Sturm-Liouville operator
Lu=—e (e u") —u
on 0 < r < 7 with boundary conditions w{0) = 0. u(x} = 0.

a) Show how Lu and the boundary conditions can be used to construct 2
selfadjoint operator 5 in 2 suitable Hilbert space M.

b) Calculate the eigenvalues and the correspouding eigenfunctions of 5.

Problem 12. The singular Sturm-Liouville operator Lu = —u” on = <
r < o is known to have a unique seifadjoint realization T in the Hilbert space
H o= La(—x.x) Itis defined by D{T)y =H O {u: w' e MYy and Lu= —u" for
all w e DIT}. tDo not prove this}. Calculate the Green's function (resolvent
kernel) of T






