Go to the first, previous, next, last section, table of contents.
The following are some limitations with the current release of
gperf
:
-
The
gperf
utility is tuned to execute quickly, and works quickly
for small to medium size data sets (around 1000 keywords). It is
extremely useful for maintaining perfect hash functions for compiler
keyword sets. Several recent enhancements now enable gperf
to
work efficiently on much larger keyword sets (over 15,000 keywords).
When processing large keyword sets it helps greatly to have over 8 megs
of RAM.
However, since gperf
does not backtrack no guaranteed solution
occurs on every run. On the other hand, it is usually easy to obtain a
solution by varying the option parameters. In particular, try the
`-r' option, and also try changing the default arguments to the
`-s' and `-j' options. To guarantee a solution, use
the `-D' and `-S' options, although the final results are not
likely to be a perfect hash function anymore! Finally, use the
`-f' option if you want gperf
to generate the perfect hash
function fast, with less emphasis on making it minimal.
-
The size of the generate static keyword array can get extremely
large if the input keyword file is large or if the keywords are quite
similar. This tends to slow down the compilation of the generated C
code, and greatly inflates the object code size. If this
situation occurs, consider using the `-S' option to reduce data
size, potentially increasing keyword recognition time a negligible
amount. Since many C compilers cannot correctly generated code for
large switch statements it is important to qualify the -S option
with an appropriate numerical argument that controls the number of
switch statements generated.
-
The maximum number of key positions selected for a given key has an
arbitrary limit of 126. This restriction should be removed, and if
anyone considers this a problem write me and let me know so I can remove
the constraint.
-
The C++ source code only compiles correctly with GNU G++, version 1.36
(and hopefully later versions). Porting to AT&T cfront would be
tedious, but possible (and desirable). There is also a K&R C version
available now. This should compile without change on most BSD systems,
but may require a bit of work to run on SYSV, since
gperf
uses
alloca in several places. Send mail to schmidt at ics.uci.edu for
information.
Go to the first, previous, next, last section, table of contents.