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2. KOszuL MODULES

Suppose that V is an n-dimensional k-vector space and fix a subspace K C /\2 V with dim(K) = m.
We denote by S := Sym(V') the symmetric algebra over V' and consider the Koszul complex resolving
the residue field k:
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Truncating this complex to the last three terms, and restricting d2 along the inclusion ¢ : K — /\2 V we

obtain a 3-term complex

d2|kes 51

K®S V®S(1)

S(2). (11)

The Koszul module associated to the pair (V, K) is the middle homology of the complex (11). We make
the convention that K is placed in degree zero, so that W (V| K) is a graded S-module generated in degree
zero. In particular, the degree g component of W(V, K) is given by

W,(V, K) = middle homology of (K ® Sym?V — V ® Sym?™' vV — Sym?*? V)

The formation of the Koszul module W (V, K) is natural in the following sense. An inclusion K C K’

induces a surjective morphism of graded S-modules
W(V,K) » W(V,K'), (12)

that is, bigger subspaces K C /\2 V' correspond to smaller Koszul modules. For instance, we have that
W(V,K) =0 if and only if K = /\2 V. We'll be interested more generally in studying Koszul modules of
finite length, that is, those that satisfy W, (V, K) = 0 for ¢ > 0. Since W (V, K) is generated in degree
zero, the vanishing W, (V, K) = 0 for some ¢ > 0 implies that Wy (V, K) = 0 for all ¢ > ¢.

We write 1Y : A2VY — KV for the dual to the inclusion ¢, let K+ := ker(:¥) € A V" and define the
resonance variety R(V, K) by

7uVJQ::{aevV:ﬂmmemﬁsbenymhﬂmtaAbeKﬁ\{m}u{m, (13)

Lemma 11. The resonance variety R(V, K) coincides with the set-theoretic support of W(V, K) in the
affine space VV.

Proof. We let P = PV denote the projective space of one dimensional subspaces of V'V, and consider
the Koszul sheaf W(V, K), defined by considering the complex of sheaves associated to (11): W(V, K)
is the middle homology of

K®0p —V®0p(l) — Op(2)
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Since W (V, K) is a graded module, its set-theoretic support is the affine cone over the support of W(V, K).

If we write Q) = Q%, for the sheaf of differential forms, then the Euler sequence
0—Q—V®0p(-1) — 0Op —0 (14)
yields the identification ker(V @ Op(1) — Op(2)) = Q(2), so that
W(V, K) = coker(K ® Op — Q(2)).

It follows that the support of W(V, K) is the locus where the map K ® Op — (2) fails to be surjective.
By Nakayama’s lemma, this is a condition that can be checked on fibers.

Consider a point p = [f] € P, where 0 # f € VV. The restriction of (14) to the fiber at p identifies
with

0 — ker(f) — V —1> k —> 0, (15)

so the restriction of the map K ® Op — €2(2) to the fiber at p is given by the contraction by f map
K — ker(f). It follows that p is in the support of W(V, K) if and only if the corresponding sequence

K—>Vi>k

fails to be exact in the middle. This is equivalent to the dual sequence
k-Lvv A gy, (16)

where the second map is the composition V'V M, N> VY — KV. It follows that a cycle in (16) is an
element g € VY with gA f € K1, and g gives a non-trivial homology class if and only if g is not a multiple
of f, that is, if g A f # 0. Using (13) the existence of such g is equivalent to the fact that f € R(V, K),

which concludes our proof. (|

It follows from Lemma 11 that W (V, K) has finite length if and only R(V, K) = {0}. In view of (13),
this last condition is equivalent to the fact that the linear subspace PK+ C P( /\2 VV) is disjoint from the

Grassmann variety
G = Gry(VY)

in its Pliicker embedding, which can happen only when m = codim(PK+) > dim(G) = 2n — 4. Summa-

rizing, we have the following equivalences:
PK* NG =0 < R(V,K) = {0} <= dim W(V, K) < oc. (17)

Moreover, if the equivalent statements in (17) hold, then m > 2n — 3. The following theorem gives a

sharp vanishing result for the graded components of a Koszul module with vanishing resonance.



KOSZUL MODULES 9
Theorem 12. Suppose that n > 3. If char(k) =0 or char(k) > n — 2, then we have the equivalence
R(V,K) = {0} <= W (V,K) =0 for ¢ >n —3. (18)
Exercise 13. Check Theorem 12 in the case when n = 3.

Exercise 14. Show that if R(V, K) = {0} then there exists a subspace K’ C K with dim(K’) = 2n — 3
such that R(V,K’) = {0}. Conclude that the implication “=" in (18) reduces to the case when
dim(K) = 2n — 3.

Proof of Theorem 12. The implication “<=" follows from (17). To prove “=", we assume that (V, K)
is such that R(V,K) = {0} and dim(K) = 2n — 3. With notation as in the proof of Lemma 11, it
follows that the natural map a : K ® Op — (2) is surjective, and therefore it gives rise to an exact
Buchsbaum-Rim complex B, = BRo () with

By =Q(2), By =K ® Op,
ntr—2
By= J\ K®det(Q'(-2)) ®D'2(Q"(-2))
n+r—2
= /\ K@O(—n—2r+6)@D 2(QY) forr=2,--- ,n— 1.
The condition W,,_3(V, K) = 0 is equivalent to the fact that after twisting by Op(n — 3), the induced
map on global sections
H(P,Bi(n - 3)) — H(P,By(n — 3)) (19)
is surjective. Since Be(n — 3) is an exact complex, its hypercohomology groups are all zero. Using
the hypercohomology spectral sequence, in order to prove the surjectivity of (19) it suffices to check
that the sheaves B,.(n — 3) have no cohomology (in fact, it is enough that H"~1(P,B,(n — 3)) = 0) for
r=2,---,n—1. Since 0 < r —2 <n — 3, it follows from our hypothesis that p = char(k) satisfies p = 0
or p > 7 — 2, thus D""2(QY) = Sym"~2(Q"). Tt follows that
ntr—2
B:(n—3)= A K@Sym?(Q")@0(-2r+3), forr=2,--- ,n—1,

and it suffices to check that Sym” (V) ® O(—2r + 3) has no non-zero cohomology for r =2, ,n — 1.

Dualizing the Euler sequence (14) and taking symmetric powers we obtain a short exact sequence
0— Sym" 3V ®O(—r) — Sym" 2V ® O(—r 4+ 1) — Sym" 2(Q") ® O(=2r + 3) — 0.

It is then enough to check that O(—r) and O(—r+1) have no non-zero cohomology when r = 2,---  n—1,
which follows from the fact that —n < —r, —r+1 < 0 and cohomology of line bundles on projective space

vanishes in this range. O
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Remark 15. If you know about Castelnuovo-Mumford regularity, then you can replace the spectral se-
quence argument in the proof above with the following (which I learned from Rob Lazarsfeld). Dualizing
the Euler sequence (14) we get that QY(—1) has a two-step resolution 0 — O(—1) — VV ® O. Since
O is O-regular and O(—1) is 1-regular, we conclude that QV(—1) is O-regular. A tensor product of copies
of 2V(—1) will then also be O-regular. Under our assumptions, D"~2 (QY) ® O(—r +2) = D" (QY(~1))
is a direct summand in a tensor product of (r — 2) copies of QY(—1), so it is itself O-regular. Since O(—1)
is i-regular for all , it follows that B,(n — 3) is (r — 1)-regular for r > 2. If we let J = ker(B;(n —3) —
Bo(n—3)) it follows that J has a resolution Be>2(n—3), where the i-th term B;12(n—3) is (i+1)-regular.
This implies that J is 1-regular, so that H!(P,J) = 0. From the long exact sequence

- — HY(P,Bi(n—3)) — H'(P,By(n—3)) — H'(P,J) — - -
it follows that the map (19) is surjective, as desired.

Experimental evidence suggests that char(k) > n — 2 is the precise hypothesis necessary for (18) to

hold. Similarly, the vanishing range ¢ > n — 3 is optimal, as shown by the following.

Theorem 16. Suppose char(k) = 0 or char(k) > n—2, and fir a subspace K C N\*V. If R(V, K) = {0},
then

forq=0,...,n—4.

dim W, (V, K) < <n+q—1>(n—2)(n_q_3)

q qg—+2
Moreover, equality holds for all q if dim(K) = 2n — 3.

The table below records some of the values of dim W, (V, K) in the case when equality holds in Theorem 16.

S\ 4 5 6 7 8
0 [1 3 6 10 15
1 |— 5 16 35 64 20)
2 |- — 21 70 162
3 |- — — 84 288
4 |- — — — 330

Exercise 17. Find a formula for dim(K ® Sym? V') and dim(W,(V,0)), and check that

dim(W,(V,0)) — dim(K ® Sym? V) = <" +Z N 1> (n— 22(2_2 973) i dim(K) = 2n — 3.

Proof of Theorem 16. Using (12) and Exercise 14, we are reduced to the case dim(K) = 2n — 3. We have
that W, (V, K) is the cokernel of the natural map

By : K ®Sym?V — W, (V,0).
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When ¢ = n — 3, the source and target have the same dimension. By Theorem 12, W,,_3(V, K) = 0,
80 Bn—3 is an isomorphism, and in particular it is injective. Since 8 =@, 8, : K ® S — W(V,0) is a
map of S-modules, whose source is free, it follows that the injectivity of 3,_3 implies that of 3, for all
q < n — 3. This shows that

dim(Wy(V, K)) = dim(Wy(V, K)) — dim(K ® Sym?V) for ¢ =0,--- ,n — 3,

and the desired formula follows from Exercise 17. O



