2. Koszul modules

Suppose that V is an n-dimensional k-vector space and fix a subspace $K \subseteq \Lambda^{2} V$ with $\operatorname{dim}(K)=m$. We denote by $S:=\operatorname{Sym}(V)$ the symmetric algebra over V and consider the Koszul complex resolving the residue field \mathbf{k} :

$$
\cdots \longrightarrow \bigwedge^{3} V \otimes S \xrightarrow{\delta_{3}} \bigwedge^{2} V \otimes S \xrightarrow{\delta_{2}} V \otimes S \xrightarrow{\delta_{1}} S
$$

Truncating this complex to the last three terms, and restricting δ_{2} along the inclusion $\iota: K \hookrightarrow \bigwedge^{2} V$ we obtain a 3 -term complex

$$
\begin{equation*}
K \otimes S \xrightarrow{\left.\delta_{2}\right|_{K \otimes S}} V \otimes S(1) \xrightarrow{\delta_{1}} S(2) . \tag{11}
\end{equation*}
$$

The Koszul module associated to the pair (V, K) is the middle homology of the complex (11). We make the convention that K is placed in degree zero, so that $W(V, K)$ is a graded S-module generated in degree zero. In particular, the degree q component of $W(V, K)$ is given by

$$
W_{q}(V, K)=\text { middle homology of }\left(K \otimes \operatorname{Sym}^{q} V \longrightarrow V \otimes \operatorname{Sym}^{q+1} V \longrightarrow \operatorname{Sym}^{q+2} V\right)
$$

The formation of the Koszul module $W(V, K)$ is natural in the following sense. An inclusion $K \subseteq K^{\prime}$ induces a surjective morphism of graded S-modules

$$
\begin{equation*}
W(V, K) \rightarrow W\left(V, K^{\prime}\right), \tag{12}
\end{equation*}
$$

that is, bigger subspaces $K \subseteq \bigwedge^{2} V$ correspond to smaller Koszul modules. For instance, we have that $W(V, K)=0$ if and only if $K=\bigwedge^{2} V$. We'll be interested more generally in studying Koszul modules of finite length, that is, those that satisfy $W_{q}(V, K)=0$ for $q \gg 0$. Since $W(V, K)$ is generated in degree zero, the vanishing $W_{q}(V, K)=0$ for some $q \geq 0$ implies that $W_{q^{\prime}}(V, K)=0$ for all $q^{\prime} \geq q$.

We write $\iota^{\vee}: \Lambda^{2} V^{\vee} \rightarrow K^{\vee}$ for the dual to the inclusion ι, let $K^{\perp}:=\operatorname{ker}\left(\iota^{\vee}\right) \subseteq \Lambda^{2} V^{\vee}$ and define the resonance variety $\mathcal{R}(V, K)$ by

$$
\begin{equation*}
\mathcal{R}(V, K):=\left\{a \in V^{\vee}: \text { there exists } b \in V^{\vee} \text { such that } a \wedge b \in K^{\perp} \backslash\{0\}\right\} \cup\{0\} . \tag{13}
\end{equation*}
$$

Lemma 11. The resonance variety $\mathcal{R}(V, K)$ coincides with the set-theoretic support of $W(V, K)$ in the affine space V^{\vee}.

Proof. We let $\mathbf{P}=\mathbb{P} V^{\vee}$ denote the projective space of one dimensional subspaces of V^{\vee}, and consider the Koszul sheaf $\mathcal{W}(V, K)$, defined by considering the complex of sheaves associated to (11): $\mathcal{W}(V, K)$ is the middle homology of

$$
K \otimes \mathcal{O}_{\mathbf{P}} \longrightarrow V \otimes \mathcal{O}_{\mathbf{P}}(1) \longrightarrow \mathcal{O}_{\mathbf{P}}(2)
$$

Since $W(V, K)$ is a graded module, its set-theoretic support is the affine cone over the support of $\mathcal{W}(V, K)$.
If we write $\Omega=\Omega_{\mathbf{P}}^{1}$ for the sheaf of differential forms, then the Euler sequence

$$
\begin{equation*}
0 \longrightarrow \Omega \longrightarrow V \otimes \mathcal{O}_{\mathbf{P}}(-1) \longrightarrow \mathcal{O}_{\mathbf{P}} \longrightarrow 0 \tag{14}
\end{equation*}
$$

yields the identification $\operatorname{ker}\left(V \otimes \mathcal{O}_{\mathbf{P}}(1) \longrightarrow \mathcal{O}_{\mathbf{P}}(2)\right)=\Omega(2)$, so that

$$
\mathcal{W}(V, K)=\operatorname{coker}\left(K \otimes \mathcal{O}_{\mathbf{P}} \longrightarrow \Omega(2)\right) .
$$

It follows that the support of $\mathcal{W}(V, K)$ is the locus where the map $K \otimes \mathcal{O}_{\mathbf{P}} \longrightarrow \Omega(2)$ fails to be surjective. By Nakayama's lemma, this is a condition that can be checked on fibers.

Consider a point $p=[f] \in \mathbf{P}$, where $0 \neq f \in V^{\vee}$. The restriction of (14) to the fiber at p identifies with

$$
\begin{equation*}
0 \longrightarrow \operatorname{ker}(f) \longrightarrow V \xrightarrow{f} \mathbf{k} \longrightarrow 0, \tag{15}
\end{equation*}
$$

so the restriction of the map $K \otimes \mathcal{O}_{\mathbf{P}} \longrightarrow \Omega(2)$ to the fiber at p is given by the contraction by f map $K \longrightarrow \operatorname{ker}(f)$. It follows that p is in the support of $\mathcal{W}(V, K)$ if and only if the corresponding sequence

$$
K \longrightarrow V \xrightarrow{f} \mathbf{k}
$$

fails to be exact in the middle. This is equivalent to the dual sequence

$$
\begin{equation*}
\mathbf{k} \xrightarrow{\cdot f} V^{\vee} \xrightarrow{\wedge f} K^{\vee}, \tag{16}
\end{equation*}
$$

where the second map is the composition $V^{\vee} \xrightarrow{\wedge f} \Lambda^{2} V^{\vee} \rightarrow K^{\vee}$. It follows that a cycle in (16) is an element $g \in V^{\vee}$ with $g \wedge f \in K^{\perp}$, and g gives a non-trivial homology class if and only if g is not a multiple of f, that is, if $g \wedge f \neq 0$. Using (13) the existence of such g is equivalent to the fact that $f \in \mathcal{R}(V, K)$, which concludes our proof.

It follows from Lemma 11 that $W(V, K)$ has finite length if and only $\mathcal{R}(V, K)=\{0\}$. In view of (13), this last condition is equivalent to the fact that the linear subspace $\mathbb{P} K^{\perp} \subseteq \mathbb{P}\left(\bigwedge^{2} V^{\vee}\right)$ is disjoint from the Grassmann variety

$$
\mathbf{G}:=\operatorname{Gr}_{2}\left(V^{\vee}\right)
$$

in its Plücker embedding, which can happen only when $m=\operatorname{codim}\left(\mathbb{P} K^{\perp}\right)>\operatorname{dim}(\mathbf{G})=2 n-4$. Summarizing, we have the following equivalences:

$$
\begin{equation*}
\mathbb{P} K^{\perp} \cap \mathbf{G}=\emptyset \Longleftrightarrow \mathcal{R}(V, K)=\{0\} \Longleftrightarrow \operatorname{dim}_{\mathbf{k}} W(V, K)<\infty . \tag{17}
\end{equation*}
$$

Moreover, if the equivalent statements in (17) hold, then $m \geq 2 n-3$. The following theorem gives a sharp vanishing result for the graded components of a Koszul module with vanishing resonance.

Theorem 12. Suppose that $n \geq 3$. If $\operatorname{char}(\mathbf{k})=0$ or $\operatorname{char}(\mathbf{k}) \geq n-2$, then we have the equivalence

$$
\begin{equation*}
\mathcal{R}(V, K)=\{0\} \Longleftrightarrow W_{q}(V, K)=0 \text { for } q \geq n-3 . \tag{18}
\end{equation*}
$$

Exercise 13. Check Theorem 12 in the case when $n=3$.
Exercise 14. Show that if $\mathcal{R}(V, K)=\{0\}$ then there exists a subspace $K^{\prime} \subseteq K$ with $\operatorname{dim}\left(K^{\prime}\right)=2 n-3$ such that $\mathcal{R}\left(V, K^{\prime}\right)=\{0\}$. Conclude that the implication " \Longrightarrow " in (18) reduces to the case when $\operatorname{dim}(K)=2 n-3$.

Proof of Theorem 12. The implication " \Longleftarrow " follows from (17). To prove " \Longrightarrow ", we assume that (V, K) is such that $\mathcal{R}(V, K)=\{0\}$ and $\operatorname{dim}(K)=2 n-3$. With notation as in the proof of Lemma 11, it follows that the natural map $\alpha: K \otimes \mathcal{O}_{\mathbf{P}} \longrightarrow \Omega(2)$ is surjective, and therefore it gives rise to an exact Buchsbaum-Rim complex $\mathcal{B}_{\bullet}=$ BR. $_{\bullet}(\alpha)$ with

$$
\begin{gathered}
\mathcal{B}_{0}=\Omega(2), \mathcal{B}_{1}=K \otimes \mathcal{O}_{\mathbf{P}}, \\
\mathcal{B}_{r}= \\
=\bigwedge_{n+r-2}^{n+r-2} K \otimes \operatorname{det}\left(\Omega^{\vee}(-2)\right) \otimes \mathrm{D}^{r-2}\left(\Omega^{\vee}(-2)\right) \\
\\
\bigwedge^{\vee} K \otimes \mathcal{O}(-n-2 r+6) \otimes \mathrm{D}^{r-2}\left(\Omega^{\vee}\right) \text { for } r=2, \cdots, n-1 .
\end{gathered}
$$

The condition $W_{n-3}(V, K)=0$ is equivalent to the fact that after twisting by $\mathcal{O}_{\mathbf{P}}(n-3)$, the induced map on global sections

$$
\begin{equation*}
H^{0}\left(\mathbf{P}, \mathcal{B}_{1}(n-3)\right) \longrightarrow H^{0}\left(\mathbf{P}, \mathcal{B}_{0}(n-3)\right) \tag{19}
\end{equation*}
$$

is surjective. Since $\mathcal{B}_{\bullet}(n-3)$ is an exact complex, its hypercohomology groups are all zero. Using the hypercohomology spectral sequence, in order to prove the surjectivity of (19) it suffices to check that the sheaves $\mathcal{B}_{r}(n-3)$ have no cohomology (in fact, it is enough that $\left.H^{r-1}\left(\mathbf{P}, \mathcal{B}_{r}(n-3)\right)=0\right)$ for $r=2, \cdots, n-1$. Since $0 \leq r-2 \leq n-3$, it follows from our hypothesis that $p=\operatorname{char}(\mathbf{k})$ satisfies $p=0$ or $p>r-2$, thus $\mathrm{D}^{r-2}\left(\Omega^{\vee}\right)=\operatorname{Sym}^{r-2}\left(\Omega^{\vee}\right)$. It follows that

$$
\mathcal{B}_{r}(n-3)=\bigwedge^{n+r-2} K \otimes \operatorname{Sym}^{r-2}\left(\Omega^{\vee}\right) \otimes \mathcal{O}(-2 r+3), \text { for } r=2, \cdots, n-1,
$$

and it suffices to check that $\operatorname{Sym}^{r-2}\left(\Omega^{\vee}\right) \otimes \mathcal{O}(-2 r+3)$ has no non-zero cohomology for $r=2, \cdots, n-1$. Dualizing the Euler sequence (14) and taking symmetric powers we obtain a short exact sequence

$$
0 \longrightarrow \operatorname{Sym}^{r-3} V \otimes \mathcal{O}(-r) \longrightarrow \operatorname{Sym}^{r-2} V \otimes \mathcal{O}(-r+1) \longrightarrow \operatorname{Sym}^{r-2}\left(\Omega^{\vee}\right) \otimes \mathcal{O}(-2 r+3) \longrightarrow 0
$$

It is then enough to check that $\mathcal{O}(-r)$ and $\mathcal{O}(-r+1)$ have no non-zero cohomology when $r=2, \cdots, n-1$, which follows from the fact that $-n<-r,-r+1<0$ and cohomology of line bundles on projective space vanishes in this range.

Remark 15. If you know about Castelnuovo-Mumford regularity, then you can replace the spectral sequence argument in the proof above with the following (which I learned from Rob Lazarsfeld). Dualizing the Euler sequence (14) we get that $\Omega^{\vee}(-1)$ has a two-step resolution $0 \longrightarrow \mathcal{O}(-1) \longrightarrow V^{\vee} \otimes \mathcal{O}$. Since \mathcal{O} is 0 -regular and $\mathcal{O}(-1)$ is 1-regular, we conclude that $\Omega^{\vee}(-1)$ is 0 -regular. A tensor product of copies of $\Omega^{\vee}(-1)$ will then also be 0 -regular. Under our assumptions, $\mathrm{D}^{r-2}\left(\Omega^{\vee}\right) \otimes \mathcal{O}(-r+2)=\mathrm{D}^{r-2}\left(\Omega^{\vee}(-1)\right)$ is a direct summand in a tensor product of $(r-2)$ copies of $\Omega^{\vee}(-1)$, so it is itself 0 -regular. Since $\mathcal{O}(-i)$ is i-regular for all i, it follows that $\mathcal{B}_{r}(n-3)$ is $(r-1)$-regular for $r \geq 2$. If we let $\mathcal{J}=\operatorname{ker}\left(\mathcal{B}_{1}(n-3) \longrightarrow\right.$ $\left.\mathcal{B}_{0}(n-3)\right)$ it follows that \mathcal{J} has a resolution $\mathcal{B}_{\bullet \geq 2}(n-3)$, where the i-th term $\mathcal{B}_{i+2}(n-3)$ is $(i+1)$-regular. This implies that \mathcal{J} is 1-regular, so that $H^{1}(\mathbf{P}, \mathcal{J})=0$. From the long exact sequence

$$
\cdots \longrightarrow H^{0}\left(\mathbf{P}, \mathcal{B}_{1}(n-3)\right) \longrightarrow H^{0}\left(\mathbf{P}, \mathcal{B}_{0}(n-3)\right) \longrightarrow H^{1}(\mathbf{P}, \mathcal{J}) \longrightarrow \cdots
$$

it follows that the map (19) is surjective, as desired.
Experimental evidence suggests that $\operatorname{char}(\mathbf{k}) \geq n-2$ is the precise hypothesis necessary for (18) to hold. Similarly, the vanishing range $q \geq n-3$ is optimal, as shown by the following.

Theorem 16. Suppose $\operatorname{char}(\mathbf{k})=0$ or $\operatorname{char}(\mathbf{k}) \geq n-2$, and fix a subspace $K \subseteq \bigwedge^{2} V$. If $\mathcal{R}(V, K)=\{0\}$, then

$$
\operatorname{dim} W_{q}(V, K) \leq\binom{ n+q-1}{q} \frac{(n-2)(n-q-3)}{q+2} \quad \text { for } q=0, \ldots, n-4
$$

Moreover, equality holds for all q if $\operatorname{dim}(K)=2 n-3$.
The table below records some of the values of $\operatorname{dim} W_{q}(V, K)$ in the case when equality holds in Theorem 16.

$q \backslash^{n}$	4	5	6	7	8
0	1	3	6	10	15
1	-	5	16	35	64
2	-	-	21	70	162
3	-	-	-	84	288
4	-	-	-	-	330

Exercise 17. Find a formula for $\operatorname{dim}\left(K \otimes \operatorname{Sym}^{q} V\right)$ and $\operatorname{dim}\left(W_{q}(V, 0)\right)$, and check that

$$
\operatorname{dim}\left(W_{q}(V, 0)\right)-\operatorname{dim}\left(K \otimes \operatorname{Sym}^{q} V\right)=\binom{n+q-1}{q} \frac{(n-2)(n-q-3)}{q+2} \text { if } \operatorname{dim}(K)=2 n-3 .
$$

Proof of Theorem 16. Using (12) and Exercise 14, we are reduced to the case $\operatorname{dim}(K)=2 n-3$. We have that $W_{q}(V, K)$ is the cokernel of the natural map

$$
\beta_{q}: K \otimes \operatorname{Sym}^{q} V \longrightarrow W_{q}(V, 0) .
$$

When $q=n-3$, the source and target have the same dimension. By Theorem $12, W_{n-3}(V, K)=0$, so β_{n-3} is an isomorphism, and in particular it is injective. Since $\beta=\bigoplus_{q} \beta_{q}: K \otimes S \longrightarrow W(V, 0)$ is a map of S-modules, whose source is free, it follows that the injectivity of β_{n-3} implies that of β_{q} for all $q \leq n-3$. This shows that

$$
\operatorname{dim}\left(W_{q}(V, K)\right)=\operatorname{dim}\left(W_{0}(V, K)\right)-\operatorname{dim}\left(K \otimes \operatorname{Sym}^{q} V\right) \text { for } q=0, \cdots, n-3
$$

and the desired formula follows from Exercise 17.

