Question 1. Suppose G is a group and S a subset of G. Write down a real proof that $C(G, S)$ is connected if and only if S is a generating set for G. Recall that S generates G If each element of G can be written as a product of elements of S and their inverses.

Question 2. Suppose G is a group and S a (finite? not sure if you need this) generating set of G. Suppose H is a subgroup of G. Show that H is of finite index in G if and only if there exists a $D>0$ such that each element of g is within D of an element of H.

Question 3. Use the "drawing trick" to draw the Cayley graph of D_{n} (symmetries of the regular n-gon) with respect to two adjacent reflections.

Question 4. Try to do the "drawing trick" for S_{4} generated by the 3 adjacent transpositions $\{(12),(23),(34)\}$ by viewing S_{4} as the symmetry group of a regular tetrahedron.

Question 5. Harder problem: Give a combinatorial description of the Cayley graph of S_{n} with respect to the elementary transpositions $T_{n-1}=\{(12),(23), \ldots,(n-1 n)\}$.

Question 6. Use the fact that $C\left(S_{n}, T_{n-1}\right)$ from the previous problem is a bipartite graph to show that each permutation $\sigma \in S_{n}$ can be assigned a partity in a well-defined way - more rigorously, there is a group homomorphism f from S_{n} to \mathbb{Z}_{2} (the group of order 2) defined by $f(\sigma)$ is 0 if σ can be written as a product of an even number of transpositions and $f(\sigma)=1$ if σ can be written as a product of an odd number of transpositions.

Hints:

- In a bipartite graph, all loops have even length.
- We already know that each $\sigma \in S_{n}$ can be written as a product of transpositions - but not in a unique way. If you don't know this fact already, I bet you can convince yourself of it pretty quickly - you will use this fact of course.
- Each transposition $(i j)$ can be written as the product of an odd number of elements from T_{n-1} you should prove this. First show it for transpositions of the form (1a) for any $a>1$. Then use the fact that $(a b)$ with $a<b$ can be written as $(1 a)(1 b)(1 a)$ to conclude what you need.

Question 7. Draw the Cayley graph of $G=\mathbb{Z} \oplus \mathbb{Z}$ where G is generated by $S=\{(\pm 1,0),(0, \pm 1)\}$ as an undirected graph with two colors.

Question 8. See if you can explain how to "recognize" a normal subgroup H in $C(G, S)$ where H is generated by a subset of S.

