Counting cubic fields
Differences between $n=2$ and $n=3$:

- For $n=2$, every quadratic field could be written as $Q(\sqrt{D})$ for some D
- For $n=3$, thee are cubic fields that cannot be expressed as $Q(\sqrt[3]{a})$ for some a.
Example: $f(x)=x^{3}+x^{2}-1$ if α is aroot, $Q(\alpha) \neq \mathbb{Q}(\sqrt[3]{a})$ forany a

$$
g(x)=x^{3}+x^{2}-3 x-1 \text { if } \beta \text { a root of } g(x) \text {, then } \mathbb{Q}(\beta) \notin \mathbb{Q}(\sqrt[3]{b})
$$ for some b

(lmfdb.org)
If $f(x)=a_{3} x^{3}+a_{2} x^{2}+a_{1} x+a_{0} \quad a_{i} \in \mathbb{Z}$ irreducible,
and α satisfies $f(\alpha)=0$

$$
\begin{aligned}
Q(\alpha) & =\left\{c_{0}+c_{1} \alpha+c_{2} \alpha^{2} \mid c_{0}, c_{1}, c_{2} \in Q\right\} \\
& =\left\{1, \alpha, \alpha^{2}\right\rangle_{Q}
\end{aligned}
$$

Algebraic Goal: come up w/a replacement for the
enumeration of quadratic fields by squarefree integers for cubic fields
(1) Side goals/hope/dreams: come up w/ a replacement for the parameter D that we bounded by x and $l e t X \longrightarrow \infty$

Fact: Every numberfield has a unique ring of integers inside of it
If $K=Q(\alpha)$ is a number feed, then inside of K is
set of all algebraic integers in K.
Def'n: An algebraic integer is a root of a monic integer coefficient polynomial.
Example: $x^{2}-5$ so $\sqrt{5}$ is algebraic integer
$\frac{\sqrt{5}}{7}$ is not an algebraic integer because $x^{2}-\frac{5}{49}$ is not integerceefficant and $49 x^{2}-5$ is not monic
weird but true: $\frac{1+\sqrt{5}}{2}$ is the root of $x^{2}-x-1$
Ring of Integers

- they are rings (commutative, w/identity)
- no zero divisors
- they are \mathbb{Z}-modules (vector space structure but
- Krull dimension 1 over \mathbb{Z} instead ofafield)

Strategy: Enumerate cubicrings of integers in order to enumerate cubic fields.

- employ that fact that such rings have a rank 3 (di mi) \mathbb{Z}-module
- create a moduli space for all "nice" bases of cubicrings nice
bass $\longleftrightarrow v \in V$
What makes a basis nice?
(1) \mathbb{Z} is a subset (submodule) of any rank $3 \mathbb{Z}$-module so the first basiselement can be taken to be 1

$$
R=\langle 1, w, \theta\rangle_{\mathbb{Z}}=\left\{z_{1}+z_{2} w+z_{3} \theta \mid z_{1}, z_{2}, z_{3} \in \mathbb{Q}\right\}
$$

Since $\langle 1, w, \theta\rangle$ is aring, we should be multiply elements This means that $\omega^{2} \in R$ and therefore should be expressible in terms of the basis. Same for \mathcal{Q}^{2} and $w Q$
(2) In stead of assuming that

$$
\omega \theta=d+e w+f \theta \quad d, e, f \in \mathbb{Z}
$$

we can translate ω and θ so that $e=0$ and $f=0$.

$$
\begin{array}{ll}
\omega^{2}=a+b \omega+c \theta & a, b, c \in \mathbb{Z} \\
\omega \theta=d & d \in \mathbb{Z} \\
\theta^{2}=g+h \omega+i \theta & g, h, i \in \mathbb{Z}
\end{array}
$$

$$
\begin{aligned}
w \theta \cdot \theta & =w \cdot \theta^{2} \\
d \cdot \theta & =w(g+h w+i \theta) \\
d \cdot \theta & =g w+h w^{2}+i w \theta \\
& =g w+h(a+b w+c \theta)+i d \\
d \cdot \theta & =(h a+i d)+(g+b h) w+c h \theta
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow h a+i d & =0 \\
g+b h & =0
\end{aligned}
$$

and $d=c h$
You can get formulas for a and g interns of b, c, h, i so wecan talk about the multiplication structure on rank $3 \mathbb{Z}$-modules in a nice basis lising 4 integers $\langle 1, \omega, \theta\rangle \xrightarrow{\langle }\left\langle\left\langle, \omega^{\prime}, \theta^{\prime}\right\rangle G\left(_{2}(\mathbb{Z})=\gamma\right.\right.$

How does $G l_{2}(\mathbb{Z})$ act on b, c, h, i ?
As if b, c, h, i were the coefficients of 2 -variable degree 3 polynomial

$$
\begin{aligned}
& \quad f(x, y)=-c x^{3}+b x^{2} y-i x y^{2}+h y^{3} \\
& \gamma f=f((x, y) \gamma)
\end{aligned}
$$

