Homework 9, Math 6610, due Nov. 7

Consider the matrix

$$
A=\left[\begin{array}{rrr}
-261 & 209 & -49 \\
-530 & 422 & -98 \\
-800 & 631 & -144
\end{array}\right]
$$

where $\lambda(A)=\{10,4,3\}$.
In each of the following, determine the rate of convergence for the eigenvalue computation by computing e_{k+1} / e_{k} for large k values, where e_{k} is the error at the k-th iteration.

1. Write a power method program to compute the largest eigenvalue 10, starting from three different initial guesses:

$$
x_{o}=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] .
$$

2. Write an inverse iteration program, starting from $\sigma=3.51$ and 3.49. Choose whatever initial guess you prefer.
3. Implement the orthogonal iteration algorithm. Get all three eigenvalues from the resulting $Q^{T} A Q$.
4. Implement the original QR iteration algorithm. Get all three eigenvalues from the last $Q R$.
