Homework 8, Math 6610, due Oct. 31

1. In the following you will be shown the steps to solve the Sylvester or Lyapunov equation $A X-X B=C$, where X and C are m by n, A is m by m and B is n by n. This is a system of $m n$ linear equations for the entries of X.
(a) Given the Schur decompositions of A and B, show how $A X-X B=C$ can be transformed into a similar system $A^{\prime} Y-Y B^{\prime}=C^{\prime}$ where A^{\prime} and B^{\prime} are upper triangular.
(b) Show how to solve for the entries of Y one at a time by a process analogous to back substitution. What condition on the eigenvalues of A and B would guarantee that the system of equations is nonsingular?
(c) Show how to transform Y to get the solution X.
2. Suppose $T=\left[\begin{array}{cc}A & C \\ 0 & B\end{array}\right]$ is in Schur form. We want to find a matrix S so that $S^{-1} T S=\left[\begin{array}{cc}A & 0 \\ 0 & B\end{array}\right]$. It turns out we can choose S of the form $\left[\begin{array}{cc}I & R \\ 0 & I\end{array}\right]$. Show how to solve for R. What's the connection between this problem and Problem 1?
3. The initial value problem

$$
\begin{aligned}
& \dot{x}(t)=y(t) \\
& \dot{y}(t)= \\
&-x(t) x(0)=1 \\
& y(0)=0
\end{aligned}
$$

has solution $x(t)=\cos (t)$ and $y(t)=\sin (t)$. Let $h>0$. Here are three reasonable iterations that can be used to compute approximations $x_{k} \approx x(k h)$ and $y_{k} \approx y(k h), k=1,2,3, \ldots$, assuming that $x_{0}=1$ and $y_{0}=0$:

- Method 1

$$
\begin{aligned}
x_{k+1} & =x_{k}+h y_{k} \\
y_{k+1} & =y_{k}-h x_{k}
\end{aligned}
$$

- Method 2

$$
\begin{aligned}
x_{k+1} & =x_{k}+h y_{k} \\
y_{k+1} & =y_{k}-h x_{k+1}
\end{aligned}
$$

- Method 3

$$
\begin{aligned}
x_{k+1} & =x_{k}+h y_{k+1} \\
y_{k+1} & =y_{k}-h x_{k+1}
\end{aligned}
$$

Express each method in the form

$$
\left[\begin{array}{l}
x_{k+1} \\
y_{k+1}
\end{array}\right]=A_{h}\left[\begin{array}{l}
x_{k} \\
y_{k}
\end{array}\right]
$$

where A_{k} is a 2×2 matrix. For each case, compute the eigenvalues and use them to discuss $\lim x_{k}$ and $\lim y_{k}$ as $k \rightarrow \infty$.

