Homework 4, Math 6610-1, Due Oct. 3

Consider the tridiagonal matrix

$$
A=\left[\begin{array}{rrrrrr}
a_{1} & -b_{1} & & & & \\
-b_{1} & a_{2} & -b_{2} & & & \\
& \cdot & \cdot & \cdot & & \\
& & \cdot & \cdot & \cdot & \\
& & & -b_{n-2} & a_{n-1} & -b_{n-1} \\
& & & & -b_{n-1} & a_{n}
\end{array}\right]
$$

where $b_{0}, b_{1}, \ldots, b_{n-1}, b_{n}$ are random numbers drawn from a log-normal distribution, that is, $\log b_{i} \sim N\left(\mu, \sigma^{2}\right)$, and

$$
a_{i}=b_{i-1}+b_{i}, \quad i=1, \ldots, n
$$

1. Develop an algorithm of Gaussian elimination without pivot for such matrices to solve the linear system $A \mathbf{x}=\mathbf{b}$, and write a Matlab code. Let $n=200$ and avoid using 2-dimensional arrays in the program.
2. Fix the parameters $\mu=0, \sigma=1$ and choose some random \mathbf{x} (with each component of \mathbf{x} drawn from the standard normal distribution), calculate \mathbf{b} for each case by multipliication, then solve the system for \mathbf{b} so you will have the exact error $\delta \mathbf{x}$. Compare the error bounds (2.13) and (2.14) on page 54 of the textbook with the actual error $\|\mathbf{x}-\hat{\mathbf{x}}\|_{\infty}$. Present you results in a form similar to figure 2.3 on page 56. You should generate 20 different vectors \mathbf{b} for comparisons.
3. Change the parameters μ to -10 and 10 , and σ to 0.2 and 2 (with all combinations), repeat step 2 and discuss what you observe. Do you think we need pivoting for this matrix?
