Homework 3, Math 6610-1, Due Sept. 26

1. Consider the Gaussian elimination with partial pivoting for a nonsingular matrix A as described in algorithm 2.2. By identifying the matrices L, U and P, we can confirm the LU decomposition of A in the form PA = LU. The actual steps take the form

$$L_{n-1}P_{n-1}\cdots L_3P_3L_2P_2L_1P_1A = U,$$

as in each step, a row permutation is performed (interchanging two rows between row *i* and row *k* where k > i) and then the eliminations are executed. Write the matrices L_i and P_i explicitly and verify that the product in the above equation can be written as

$$L'_{n-1}\cdots L'_{3}L'_{2}L'_{1}P_{n-1}\cdots P_{3}P_{2}P_{1}A,$$

where

$$L'_{n-1} = L_{n-1}, \quad L'_{n-2} = P_{n-1}L_{n-2}P_{n-1}^{-1}, \quad \cdots, \quad L'_1 = P_{n-1}\cdots P_2L_1P_2^{-1}\cdots P_{n-1}^{-1}.$$

Show that L'_i and L_i have the same structure with the only difference in that some subdiagonal entries are reordered. Therefore, we can write L'PA = U, where $L' = L'_{n-1} \cdots L'_3 L'_2 L'_1$, which is equivalent to PA = LU, where $L = (L')^{-1} = (L'_1)^{-1} (L'_2)^{-1} \cdot (L'_{n-1})^{-1}$ is the lower triangular matrix in the LU decomposition. To illustrate the idea, you can work on a 4×4 matrix and generalize your conclusion to general matrices.

- 2. Question 2.2 on page 94 in Demmel.
- 3. Question 2.17 on page 98 in Demmel.
- 4. Gaussian elimination can be used to compute the inverse A^{-1} of the nonsingular $n \times n$ matrix A, though you should avoid doing so unless it's necessary. Describe an algorithm for computing A^{-1} by solving n systems of equations, and show that its asymptotic operation count is $8n^3/3$ flops.