Homework 3, Math 6610-1, Due Sept. 26

1. Consider the Gaussian elimination with partial pivoting for a nonsingular matrix A as described in algorithm 2.2. By identifying the matrices L, U and P, we can confirm the $L U$ decomposition of A in the form $P A=L U$. The actual steps take the form

$$
L_{n-1} P_{n-1} \cdots L_{3} P_{3} L_{2} P_{2} L_{1} P_{1} A=U
$$

as in each step, a row permutation is performed (interchanging two rows between row i and row k where $k>i$) and then the eliminations are executed. Write the matrices L_{i} and P_{i} explicitly and verify that the product in the above equation can be written as

$$
L_{n-1}^{\prime} \cdots L_{3}^{\prime} L_{2}^{\prime} L_{1}^{\prime} P_{n-1} \cdots P_{3} P_{2} P_{1} A
$$

where

$$
L_{n-1}^{\prime}=L_{n-1}, \quad L_{n-2}^{\prime}=P_{n-1} L_{n-2} P_{n-1}^{-1}, \quad \cdots, \quad L_{1}^{\prime}=P_{n-1} \cdots P_{2} L_{1} P_{2}^{-1} \cdots P_{n-1}^{-1} .
$$

Show that L_{i}^{\prime} and L_{i} have the same structure with the only difference in that some subdiagonal entries are reordered. Therefore, we can write $L^{\prime} P A=U$, where $L^{\prime}=$ $L_{n-1}^{\prime} \cdots L_{3}^{\prime} L_{2}^{\prime} L_{1}^{\prime}$, which is equivalent to $P A=L U$, where $L=\left(L^{\prime}\right)^{-1}=\left(L_{1}^{\prime}\right)^{-1}\left(L_{2}^{\prime}\right)^{-1}$. $\cdots\left(L_{n-1}^{\prime}\right)^{-1}$ is the lower triangular matrix in the $L U$ decomposition. To illustrate the idea, you can work on a 4×4 matrix and generalize your conclusion to general matrices.
2. Question 2.2 on page 94 in Demmel.
3. Question 2.17 on page 98 in Demmel.
4. Gaussian elimination can be used to compute the inverse A^{-1} of the nonsingular $n \times n$ matrix A, though you should avoid doing so unless it's necessary. Describe an algorithm for computing A^{-1} by solving n systems of equations, and show that its asymptotic operation count is $8 n^{3} / 3$ flops.

