Homework No. 2, Math 6610-1, Due Sept. 19

1. Given the matrix

$$
A=\left[\begin{array}{rr}
1 & 0 \\
-2 & 1
\end{array}\right]
$$

without using any properties proved in lemma 1.7 of the textbook, find $\|A\|_{1},\|A\|_{2}$ and $\|A\|_{\infty}$ based on the operator norm definitions, by explicitly obtaining the directions where the maximums of the ratio $\|A x\| /\|x\|$ are attained.
2. Consider a real, non-singular $n \times n$ matrix A and vectors $b, x \in \mathbb{R}^{n}$. We are concerned with the error in solving the linear system $A x=b$. The numerical solution \hat{x} is only an approximate solution to this equation and it satisfies a perturbed equation $\hat{A} \hat{x}=b$ exactly, where $\hat{A}=A+\delta A$. Let the error be defined as $\delta x=\hat{x}-x$, we are interested in bounding $\|\delta x\|$ in terms of $\|\delta A\|\|A\|$, or $\|\delta A\|\|\hat{A}\|$, and $\|x\|$, or $\|\hat{x}\|$, where $\|\cdot\|$ is some suitable norm, and we proceed as follows:
(a) First prove the identity

$$
A^{-1}-\hat{A}^{-1}=A^{-1} \cdot \delta A \cdot \hat{A}^{-1}
$$

and hence deduce that

$$
\left\|A^{-1}-\hat{A}^{-1}\right\| \leq\left\|A^{-1}\right\| \cdot\|\delta A\| \cdot\left\|\hat{A}^{-1}\right\| .
$$

(b) Assuming that $\hat{\delta}=\|\delta A\|\left\|\hat{A}^{-1}\right\|<1$, show that

$$
\left\|A^{-1}\right\| \leq \frac{1}{1-\hat{\delta}}\left\|\hat{A}^{-1}\right\|, \quad\left\|A^{-1}-\hat{A}^{-1}\right\| \leq \frac{\hat{\delta}}{1-\hat{\delta}}\left\|\hat{A}^{-1}\right\| .
$$

(c) By comparing the equations $A x=b$ and $(A+\delta A)(x+\delta x)=b$, show that

$$
\|\delta x\| \leq \frac{\hat{\delta}}{1-\hat{\delta}}\|\hat{x}\| .
$$

Similarly, show that if $\delta=\|\delta A\|\| \| A^{-1} \|<1$,

$$
\|\delta x\| \leq \frac{\delta}{1-\delta}\|x\|
$$

3. Let $A=L U$ be the LU factorization of n-by- $n A$ with $\left|l_{i j}\right| \leq 1$. Let a_{i}^{T} and u_{i}^{T} denote the i th rows of A and U, respectively. Verify the equation

$$
u_{i}^{T}=a_{i}^{T}-\sum_{j=1}^{i-1} l_{i j} u_{j}^{T}
$$

and use it to show that $\|U\|_{\infty} \leq 2^{n-1}\|A\|_{\infty}$.
4. A matrix is strictly diagonally dominant if

$$
\left|a_{i, i}\right|>\sum_{j=1, j \neq i}^{n}\left|a_{i, j}\right| \quad i=1, \ldots, n
$$

Show that there is no pivoting required for a strictly diagonally dominant matrix in a LU decomposition. In other words, after one step of the Gaussian elimination, the remaining submatrix is still strictly diagonally dominant.
5. The system $A x=b$ where

$$
A=\left[\begin{array}{rrr}
2 & -1 & 1 \\
-1 & 10^{-10} & 10^{-10} \\
1 & 10^{-10} & 10^{-10}
\end{array}\right] \quad b=\left[\begin{array}{c}
2\left(1+10^{-10}\right) \\
-10^{-10} \\
10^{-10}
\end{array}\right]
$$

has solution $x=\left(10^{-10},-1,1\right)^{T}$. (a) Show that if $(A+E) y=b$ and $|E| \leq 10^{-8}|A|$, then $|x-y| \leq 10^{-7}|x|$. That is, small relative changes in A 's entries do not induce large changes in x even though $\kappa_{\infty}(A)=10^{10}$. (b) Define $D=\operatorname{diag}\left(10^{-5}, 10^{5}, 10^{5}\right)$. Show $\kappa_{\infty}(D A D) \leq 5$.

