Math 5760/6890

 Introduction to Mathematical FinanceInstructor: Jingyi Zhu
Office: LCB 335
Telephone:581-3236
E-mail: zhu@math.utah.edu
Class web page:
www.math.utah.edu/~zhu/5760 11f.html

What you should NOT expect to learn here:

- Predict stock movements
- Pick stocks to outperform the market
- Forecast a particular sector/market
- Predict a crash
- Anything about the future

What you hope to and will learn (if you make the efforts)

- Consolidate and extend your knowledge of time value of money (interest rates)
- Find financial instruments to hedge your stocks
- Price a call or a put option - using Black-Scholes formula
- Understand what's about optimal portfolios - for a particular consideration

Lecture 1: Basic Probability Notions

- Probability triple: sample space, events and probability
- Conditional probability: $\quad P(A \mid B)=\frac{P(A \cap B)}{P(B)}$
- Independence: $\quad P(A \cap B)=P(A) \cdot P(B)$
- Random variables, expectation $E[X]=\sum x P(X=x)$
- Jointly distributed RV's, covariance and correlation

$$
\begin{aligned}
& \operatorname{Cov}(X, Y)=E[(X-E[X]) \cdot(Y-E[Y])] \\
& \rho(X, Y)=\operatorname{Corr}(X, Y)=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X) \cdot \operatorname{Var}(Y)}}
\end{aligned}
$$

Basic Probability Notions (continued)

- Conditional expectation

$$
E[X \mid Y]=E[X \mid Y=y]=\sum_{x} x P(X=x \mid Y=y)
$$

- A trivial but important observation

$$
E[X]=E[E[X \mid Y]]
$$

- Continuous random variable

$$
P(a \leq X \leq b)
$$

Normal Random Variables

- Bell-shaped density function

$$
f(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Center

- Spread - variance
- Adding the variances for two independent normal rv's
- Lognormal distribution $\quad Y=e^{X}$

$$
E[Y]=e^{\mu+\frac{1}{2} \sigma^{2}} \quad \operatorname{Var}(Y)=e^{2 \mu+2 \sigma^{2}}-e^{2 \mu+\sigma^{2}}
$$

Central Limit Theorem

- Most important theorem in probability theory
- Begin with any distribution (with finite mean and variance)
- A natural introduction to normal rv's
- Sum of iid (independent, identically distributed) rv's
- Properly scaled (square root of n)
- Converge in distribution

Investment Securities

- Equity: stocks
- Fixed-Income: bonds and papers
- Government vs corporations
- Rating and rating agencies (S\&P, Moody and Fitch)
- Returns, interest rates

Financial Derivatives

- Securities to be traded, on exchange or over-the-counter
- Value derived from other securities, of other uncertain quantities that will be determined in the future
- "Written on the underlying"
- A call option example
- set an expiration date, exercise price
- payoff dependent on S-K: S-K, if positive, and zero if zero or negative

Other options on a stock

- A put option
- Invest in call if you expect the stock to go up and look for the most effective way to benefit, or invest in put otherwise
- European vs American:
- European: you can exercise only on the expiration date
- American: you can exercise any time before the expiration date
- Expiration date: 3rd Friday of the month

Main Question in Option Pricing

- With an option contract, K (exercise or strike price) and T (expiration date) set
- How much is the worth of the contract TODAY?
- Depends on today's stock price
- Black-Scholes formula to compute
- Crucial parameter in the formula: the volatility

Modeling of the stock price

- Focus on the return over the time period

$$
\frac{S(t+\Delta t)-S(t)}{S(t)}
$$

- Collection of returns modeled as realizations for a rv
- Suggestion for the distribution?
- Normal distribution a natural choice
- Result in lognormal distribution for the stock itself
- Normal distribution for S not realistic!

S\&P 500 Price Distribution

S\&P 500 Daily Return Distribution

